|
|
[QUE/SM-03005] Statistical MechanicsNode id: 3233pageConsider an isolated system of $N$ non-interacting particles occupying two states of energies $-\epsilon$ and $+\epsilon$. The energy of the system is $E$. Let $x=\displaystyle{\frac{E}{N\epsilon}}.$
- Show that the entropy of the system is given by\footnote{HINT : Let $n_1$ and $n_2$ denote the number of particles in the two states of energy $-\epsilon$ and $+\epsilon$ respectively. We have $\widetilde{\Omega}=N!/(n_1!n_2!)$; $S=k_B\ln\widetilde{\Omega}$; Calculate $n_1$ and $n_2$ by solving : $n_1+n_2=N$ and $n_2\epsilon-n_1\epsilon=E$.} $$ S(E)=Nk_B\left[\left(\frac{1+x}{2}\right)\ln\left(\frac{2}{1+x} \right)+\left(\frac{1-x}{2}\right)\ln\left(\frac{2}{1-x}\right)\right] $$
- Show that ${\displaystyle \beta=\frac{1}{k_BT}=\frac{1}{2\epsilon}\ln\left(\frac{1-x}{1+x}\right)}$
|
|
22-03-04 07:03:33 |
n |
|
|
[QUE/SM-04005] Statistical MechanicsNode id: 3238pageThe canonical partition function of a system of $N$ hypothetical particles each of mass $m$, confined to a volume $V$ at temperature $T$ is given by, $$Q(T,V,N) = V^N\left(\frac{2\pi k_B T}{m}\right)^{5N/2}.$$ Determine the equation of state of the hypothetical system. Also find $C_V$ - heat capacity at constant volume. Identify the hypothetical system. How many degrees of freedom does each particle of the hypothetical system have?
|
|
22-03-04 07:03:29 |
n |
|
|
INFO --- Description and Up fields for NavigationNode id: 5321page |
|
22-03-04 06:03:16 |
n |
|
|
[NOTES/QM-18005]Born ApproximationNode id: 4833page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-18005
|
|
22-03-03 22:03:07 |
y |
|
|
[NOTES/QM-16001] Angular Momentum Algebra — Coordinate RepresentationNode id: 4779page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ qm-lec-16001
|
|
22-03-03 22:03:14 |
y |
|
|
[Solved/QM-19002] Quantum Mechanics Node id: 2257page |
|
22-03-03 13:03:40 |
n |
|
|
[Short-Examples/QM-06003] ---- Probability and Average ValuesNode id: 1963page |
|
22-03-03 12:03:10 |
n |
|
|
Problem Sets --- Classical MechanicsNode id: 2106curated_content |
|
22-03-03 12:03:45 |
n |
|
|
[QUE/PDE-01002]Node id: 1820page |
|
22-03-03 12:03:07 |
n |
|
|
Solved/PDE-01003 Partial Differential EquationsNode id: 1821page |
|
22-03-03 12:03:25 |
n |
|
|
Solved/PDE-01001Node id: 1812page |
|
22-03-03 12:03:05 |
n |
|
|
Six Lectures and a Problem Set Given on Lie Algebras --- SERC School (2014) Node id: 4936curated_contentLectures Given at SERC School (2014)
BITS PIlani Hyderabad
Page to View and Download All Resources
|
|
22-03-03 12:03:18 |
n |
|
|
Quantum Field Theory --- Notes for Lectures and Problems --- [QFT-MIXED-LOT]]Node id: 4685collection |
|
22-03-01 20:03:46 |
n |
|
|
Concepts in ThermodynamicsNode id: 5280multi_level_page |
|
22-03-01 06:03:30 |
n |
|
|
[Solved/PDE-01004] Partial Differentaial EquationsNode id: 1833page |
|
22-02-27 17:02:12 |
n |
|
|
[Solved/EM-04001] A conducting grounded sphere and a point chargeNode id: 2205page |
|
22-02-27 17:02:19 |
n |
|
|
[Solved/EM-04002] Two charged spherical shells separated by large distance Node id: 2221pageTwo spheres of conducting material have radii 1 cm and 10 cm and carry charge \(100\) coul and \(1\) coul, respectively. The separation between the centers of the two spheres is 10 m.
- What is the potential of each sphere?
- Find the charges on the two spheres, if the two spheres are connected by a fine wire.
- Are the values obtained by you exact or approximate(give reasons)?
|
|
22-02-27 17:02:37 |
n |
|
|
[Solved/EM-05001] Electromagnetic TheoryNode id: 2363pageQuestion: A dielectric sphere contains a dipole \(\vec{p}_0\). Find the net dipole moment of the system.
Solution: The dielectric gets polarized and the dipole and acquires a polarization \(\vec{P}\). The dipole moment of the dielectric is \begin{eqnarray} \vec{p} &=& \int_V \vec{P} d^3r = \int_V \vec{D}-\epsilon_0 \vec{E} d^3 r\\ &=& \int_V\epsilon_0(\kappa-1) \vec{E} d^3r = \epsilon_0(\kappa-1) \int_V\vec{E} d^3r \end{eqnarray} For arbitrary charge distribution the average of electric field, \( \int_V\vec{E} d^3r\), over sphere is \(-\dfrac{\vec{p}_\text{tot}}{3\epsilon_0}\). Hence we get
\[ \vec{p}= - \frac{(\kappa-1)}{3} \vec{p}_\text{tot}\]
using \(\vec{p}_\text{tot}= \vec{p}_0 + \vec{p}\), we get
\begin{eqnarray}\vec{p}_\text{tot} &=& \vec{p}_0 -\frac{(\kappa-1)}{3} \vec{p}_\text{tot}\\\text{or } \vec{p}_\text{tot} &=&\frac{3}{\kappa+2} \vec{p}_0\end{eqnarray}
Zangwill
|
|
22-02-27 17:02:33 |
n |
|
|
[QUE/CM-01005#Solu] Periodic Motion $V(x) = V_0 \left( e^{-2x/\alpha} - 2 e^{-x/\alpha}\right) $ Node id: 1912pageQuestion Plot the Morse potential $$V(x) = V_0 \left( \exp(-2x/\alpha) - 2 \exp(-x/\alpha)\right) $$ and find the period of small oscillations for a particle having energy $E$ and moving in fore field described by the Morse potential.}
|
|
22-02-27 17:02:21 |
n |
|
|
[Solved/QM-20002] Quantum Mechanics --- Solved ProblemNode id: 2264page |
|
22-02-27 17:02:01 |
n |