$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\newcommand{\dd}[2][]{\frac{d#1}{d#2}}${}$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\ket}[1]{|#1\rangle}$
$\newcommand{\bra}[1]{\langle #1|}$
For a quantized real scalar field \(\phi(x)\), define functions \(i\Delta^{(\pm)}(x-y)\) defined by \begin{eqnarray} i\Delta^{(+)}(x-y) &=& \matrixelement{0}{\phi(x)\,\phi(y)}{0} \\ i\Delta^{(-)}(x-y) &=& - \matrixelement{0}{\phi(y)\,\phi(x)}{0}. \end{eqnarray} Use \(\phi^{(\pm)}(x)\) to denote positive and negative frequency parts of the scalar field \(\phi(x)\). Show that
- \(\Delta^{(\pm)}(x-y)\) are real.
- \(\Delta^{(+)}(x-y) = \matrixelement{0}{\big[\phi^{(+)}(x)\,,\,\phi^{(-)}(y)\big]}{0}\) \\ \(\Delta^{(-)}(x-y) = - \matrixelement{0}{\big[\phi^{(-)}(x)\,,\,\phi^{(+)}(y)\big]}{0}\).
- The Feynman propagator \(\Delta_F\) is defined as the vacuum expectation value of time ordered product of fields: \[ \Delta_F(x-y) = \matrixelement{0}{T\big(\phi(x)\phi(y)\big)}{0}.\] Show that the Feynman propagator satisfies the equation \[ (\Box + M^2) \Delta_F(x-y)= - \delta^{(4)}(x-y).\]
Hint Write \(\Delta_F(x-y)\) as \[\Delta_F(x-y)= \Delta^{(+)}(x-y)\theta(x_0-y_0) - \Delta^{(-)}(x-y)\theta(y_0-x_0).\]
Exclude node summary :
Exclude node links:
4920: QFT-HOME, 4727: Diamond Point