Does there exist an invertible matrix \(S\) such that \[ S \gamma_\mu S^{-1} = \gamma_\mu'\] where \[\gamma_1'= \gamma_2\gamma_3, \quad \gamma_2'=\gamma_3\gamma_1, \quad \gamma_3'= \gamma_1\gamma_2, \gamma_4'=\gamma_5\gamma_4?\]
Exclude node summary :
n
Exclude node links:
0
4920: QFT-HOME, 4727: Diamond Point
0