$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\newcommand{\dd}[2][]{\frac{d#1}{d#2}}${}$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\ket}[1]{|#1\rangle}$
$\newcommand{\bra}[1]{\langle #1|}$
Consider free Schrodinger equation as a quantized field.
- Show that \begin{equation} G(x -x{'}, t -t{'} ) = \matrixelement{0}{T ψ\psi(x, t)\psi^\dagger (x{'}, t{'}))}{0} \end{equation} obeys the equation for Green function of the free particle Schrodinger equation.
- Use expansion of the field operators in terms of free particle wave function \(N \exp(ikx - iE_k t)\), where \(E_k = \frac{\hbar^2k^2}{2m}\). Obtain an explicit expression for this time ordered product as a function of \(x, t, x{'} , t{'}\).
- Have you seen this object before? Where?
Exclude node summary :
n
Exclude node links:
0
4920: QFT-HOME, 4727: Diamond Point
0