Show that conformal transformations consisting of dilations \[x^\mu \to x^\mu = e^{-\rho} x^\mu \] and special conformal transformations (SCT) \[x^\mu \to x^{\prime\,\mu}= \frac{x^\mu + c^\mu x^2}{ 1 + 2c \cdot x + c^2 x^2},\] and usual Poincaré transformations form a group. Find the commutation relations for the generators of infinitesimal transformations of this group.
Exclude node summary :
n
Exclude node links:
0
4920: QFT-HOME, 4727: Diamond Point
0