- [] Let \(\Gamma\) denote a product of Dirac matrices. Define \(\widetilde{\Gamma}\) by \begin{equation*} \bar{u}(s,q) \widetilde{\Gamma}u(r,p) = (\bar{u}(r,p)^\dagger\Gamma u(s,q))^* . \end{equation*}
- Use the above definition of \(\widetilde{\Gamma}\) and show that \[\widetilde{\Gamma} = \gamma_0 \Gamma^\dagger \gamma_0. \]
- Show that
- \vspace{-3mm}
- \(\widetilde{\gamma^\mu} = \gamma^\mu \)
- \(\widetilde{\gamma_5} = -\gamma_5\)
- \(\widetilde{\gamma^\mu \gamma_5}= - \gamma^\mu \gamma_5\)
- Compute \(\widetilde{\sigma}_{0k}\) and \(\widetilde{\sigma}_{ij}\) and hence show that \(\widetilde{\sigma}_{\mu\nu}=\sigma_{\mu\nu}\)
Exclude node summary :
n
Exclude node links:
0
4920: QFT-HOME, 4727: Diamond Point
0