Notices
 

[QUE/QFT-06001] QFT-PROBLEM

For page specific messages
For page author info
  • [] Let \(\Gamma\) denote a product of Dirac matrices. Define \(\widetilde{\Gamma}\) by \begin{equation*} \bar{u}(s,q) \widetilde{\Gamma}u(r,p) = (\bar{u}(r,p)^\dagger\Gamma u(s,q))^* . \end{equation*}
  • Use the above definition of \(\widetilde{\Gamma}\) and show that \[\widetilde{\Gamma} = \gamma_0 \Gamma^\dagger \gamma_0. \]
  • Show that
    • \vspace{-3mm}
    • \(\widetilde{\gamma^\mu} = \gamma^\mu \) 
    • \(\widetilde{\gamma_5} = -\gamma_5\) 
    • \(\widetilde{\gamma^\mu \gamma_5}= - \gamma^\mu \gamma_5\)
  • Compute \(\widetilde{\sigma}_{0k}\) and \(\widetilde{\sigma}_{ij}\) and hence show that \(\widetilde{\sigma}_{\mu\nu}=\sigma_{\mu\nu}\)

Exclude node summary : 

n

4920: QFT-HOME, 4727: Diamond Point

0
 
X