Notices
 

Browse & Filter

For page specific messages
For page author info
Enter a comma separated list of user names.
2654 records found.
Operations
Selected 20 rows in this page.  
Title+Summary Name Datesort ascending

[QUE/CM-02003]

Node id: 4406page
shivahcu's picture 22-03-19 11:03:31 n

[QUE/CM-02028]

Node id: 4430page
shivahcu's picture 22-03-19 11:03:13 n

[QUE/CM-02019]

Node id: 4421page
shivahcu's picture 22-03-19 11:03:09 n

[QUE/CM-02011]

Node id: 4413page
shivahcu's picture 22-03-19 11:03:23 n

[QUE/CM-02002]

Node id: 4405page
shivahcu's picture 22-03-19 11:03:32 n

[QUE/QFT-01002]

Node id: 4003page

Compute infinitesimal variations of the Lagrangian density for the Schrodinger field under the Galilean transformation \begin{equation} \vec{x} \longrightarrow \vec{x}{'} = \vec{x} + \vec{v} t \end{equation} and \begin{equation} \psi(\vec{x}) \longrightarrow \psi{'}(\vec{x}\,{'}) = e^{-im\vec{v}\,^{{'}\,2} t/(2\hbar)} e^{im\vec{v}\cdot\vec{x}/\hbar} \psi(\vec{x}). \end{equation} Verify that the the change in Lagrangian is a total time derivative. Find the corresponding constant of motion.

shivahcu's picture 22-03-12 18:03:31 n

[NOTES/QM-25001] Electormagnetic Waves

Node id: 4928page

$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ 
$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$
$\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
$\newcommand{\ket}[1]{\langle #1\rangle}$
qm-lec-25001

AK-47's picture 22-03-12 18:03:06 y

[NOTES/QM-25002] Approximating matter radiation interactions

Node id: 4929page

$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ 
$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$
$\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
$\newcommand{\ket}[1]{\langle #1\rangle}$
qm-lec-25002

AK-47's picture 22-03-12 18:03:17 y

[NOTES/QM-25003] Charged Particle in E.M. Field

Node id: 4931page

$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ 
$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$
$\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
$\newcommand{\ket}[1]{\langle #1\rangle}$
qm-lec-25003

AK-47's picture 22-03-12 18:03:00 y

[NOTES/QM-25004] Induced Emission and Absorption

Node id: 4932page

$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ 
$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$
$\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
$\newcommand{\ket}[1]{\langle #1\rangle}$
qm-lec-25004

AK-47's picture 22-03-12 18:03:48 y

Equilibrium in Quantum Thermodynamics

Node id: 5323forum
hsmani's picture 22-03-10 17:03:09

[NOTES/QM-16010] Classical Motion in Three Dimensions Spherically symmetric potentials

Node id: 4802page

$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ 
$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$
$\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
qm-lec-16010

AK-47's picture 22-03-07 20:03:42 y

[NOTES/QM-16009] Solving Spherically Symmetric Problems In Quantum Mechanics

Node id: 4801page

$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ 
$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$
$\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
qm-lec-16009

AK-47's picture 22-03-07 20:03:33 y

[NOTES/QM-16008] Spherically Symmetric Square Well

Node id: 4800page

$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ 
$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$
$\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
qm-lec-16008

AK-47's picture 22-03-07 20:03:18 y

[NOTES/QM-16007] Particle in a Rigid Spherical Box

Node id: 4799page

$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ 
$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$
$\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
qm-lec-16007

AK-47's picture 22-03-07 19:03:27 y

[NOTES/QM-16006] Energy Levels in Spherically Symmetric Potentials Accidental Degeneracy

Node id: 4792page

$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ 
$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$
$\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
qm-lec-16006

AK-47's picture 22-03-07 19:03:36 y

[NOTES/QM-16004] Free Particle Solution in Polar Coordinates

Node id: 4783page

$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ 
$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$
$\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
qm-lec-16004

AK-47's picture 22-03-07 19:03:11 y

[NOTES/QM-16003] Solution of Radial Equation for a Constant Potential

Node id: 4782page
AK-47's picture 22-03-07 19:03:52 n

[NOTES/QM-16002] Spherically Symmetric Potentials — Using Spherical Polar Coordinates

Node id: 4781page

$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ 
$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$
$\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
qm-lec-16002

AK-47's picture 22-03-07 19:03:56 y

[NOTES/QM-17002] Addition of Angular Momenta — Statement of Problem

Node id: 4814page

$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ 
$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$
$\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
$\newcommand{\ket}[1]{\langle #1\rangle}$
qm-lec-17002

AK-47's picture 22-03-07 19:03:01 y

Pages

 
X