|
|
[MOB/QM-08002]Node id: 4897page |
|
22-03-07 09:03:23 |
y |
|
|
[QUE/QM-23020]Node id: 4877pageTo the lowest non vanishing order in \(\epsilon\), compute the corrections to the energy levels of the Hamiltonian \begin{equation} H = H_0 + H^\prime \end{equation} for the case of spin 1, where \begin{equation} H_0= \vec{S}^2 + S_z^2, \qquad H^\prime = \epsilon S_x \end{equation}
|
|
22-03-05 08:03:46 |
n |
|
|
[NOTES/QM-20007] A First Look at the He Atom Energy LevelsNode id: 4851page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-20007
|
|
22-03-05 08:03:03 |
y |
|
|
[NOTES/QM-20006] Symmetrization PostulateNode id: 4849page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-20006
|
|
22-03-05 08:03:00 |
y |
|
|
[NOTES/QM-20005] Identical Particles in Quantum MechanicsNode id: 4848page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-20005
|
|
22-03-05 08:03:58 |
y |
|
|
[NOTES/QM-20004] Symmetrization PostulateNode id: 4847page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-20004
|
|
22-03-05 08:03:09 |
y |
|
|
[NOTES/QM-20003] Spin Wave Function Node id: 4846page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-20003
|
|
22-03-05 08:03:48 |
y |
|
|
[NOTES/QM-20002] Spin Wave Function and Spin OperatorsNode id: 4845page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-20002
|
|
22-03-05 08:03:56 |
y |
|
|
[NOTES/QM-20001] Spin as a Dynamical VariableNode id: 4844page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-20001
|
|
22-03-05 08:03:38 |
y |
|
|
[NOTES/QM-18011] Green Function for Perturbative Solution of ScatteringNode id: 4840page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-18011
|
|
22-03-04 22:03:06 |
y |
|
|
[NOTES/QM-18007] Validity of Born Approximation Square Well PotentialNode id: 4839page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-18007
|
|
22-03-04 22:03:04 |
y |
|
|
[NOTES/QM-18004] Integral Equation for ScatteringNode id: 4832page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-18004 Some algebraic manipulations Large r expansion of the formal solution
|
|
22-03-04 22:03:02 |
y |
|
|
[NOTES/QM-18003] Green Function for Poisson EquationNode id: 4830page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-18003
|
|
22-03-04 22:03:35 |
y |
|
|
[NOTES/QM-18002] Perturbative Solution of Differential equationNode id: 4829page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-18002
|
|
22-03-04 22:03:27 |
y |
|
|
[NOTES/QM-17009] Addition of Angular Momenta Using TablesNode id: 4821page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-17009
|
|
22-03-04 09:03:02 |
y |
|
|
[NOTES/QM-17007] Summary of main results on addition of angular momentaNode id: 4820page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-17007
|
|
22-03-04 09:03:42 |
y |
|
|
[NOTES/QM-17005] States Using Ladder OperatorsNode id: 4819page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-17005
|
|
22-03-04 09:03:06 |
y |
|
|
[NOTES/QM-17004] Recurrence Relations for CG CoefficientsNode id: 4817page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-17004
|
|
22-03-04 09:03:38 |
y |
|
|
[NOTES/QM-17003] Some Useful Restrictions on CG coefficientsNode id: 4816page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\ket}[1]{\langle #1\rangle}$ qm-lec-17003
|
|
22-03-04 09:03:10 |
y |
|
|
[QUE/SM-04004]Node id: 3237pageThe canonical partition function of a system is given by \hfill \HighLight{\fbox{\tiny KPN}} \begin{eqnarray*} Q(T,V,N) &=& \frac{V^N}{N!}\frac{1}{\Lambda^{3N}}\ ;\ \Lambda = \frac{h}{\sqrt{2\pi mk_BT}}. \end{eqnarray*}
- Derive an expression for entropy : $S(T,V,N)$.
- Consider a quasi-static reversible process in which entropy does not change and $N$ does not change; volume and temperature, however, can change. Show that $TV^{2/3}$ is a constant during such a process.
|
|
22-03-04 07:03:22 |
n |