Notices
 

Solved/PDE-01001

For page specific messages
For page author info

 

Question 

Show that the solution of the    partial  differential equation              \[ \frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{t} \]   which satisfies the conditions:       

  1.            \(\displaystyle \frac{u(x,t)}{\partial x} =0 \quad  \text{ for } x=0 \quad \text{ and }   x=a, \quad \text{ and all }t \),
  2.            \(u(x,t)\) is bounded for all \(-a\le x \le a\) as     \(t\to \infty\),
  3.           \(u(x,t)\big|_{t=0}= |x| \),  for \(-a \le x\le a\),          is given by          \[ y =   \frac{a}{2}-\frac{4a}{\pi^2}\sum_{n=0}^\infty\frac{1}{(2n+1)^2} \cos \big(\tfrac{(2n+1)\pi x}{a}\big) e^{-[k(2n+1)^2\pi^2t]/a^2}.\]

Usage Context

Suitable for Examination and Tests, Home Work, Tutorial

 

Exclude node summary : 

n
0
 
X