$\newcommand{\Lsc}{\mathscr L}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
Assuming interactions of charged pions to be of the form \(\Lsc_\text{int}(x)= (g/4)(\pi(x)^+\pi(x)^-)^2\) find
- the \(S\) matrix element for \(\pi-\pi\) scattering \[\pi^+ + \pi^- \longrightarrow \pi^+ + \pi^-\]
- transition probability per unit time per unit volume for \(\pi - \pi\) scattering.
- Compute the total cross section for the scattering process and show that \[ \dd[\sigma]{\Omega}= \frac{g^2}{64\pi^2 E_\text{cm}^2}\]
Exclude node summary :
n
Exclude node links:
0
4920: QFT-HOME, 4727: Diamond Point
0