$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\ket}[1]{|#1\rangle}$
$\newcommand{\bra}[1]{\langle #1|}$
$\newcommand{\Lsc}{\mathscr L}$
- The Lagrangian density for the Schrodinger equation is given to be \[\Lsc = i\hbar\psi^*(x,t)\pp[\psi(x,t)]{t} - \frac{\hbar^2}{2m} |\nabla \psi|^2 - \psi^*(x,t)V(x)\psi(x,t)\] Verify that the Euler Lagrange equations for the Schrodinger field coincide with the Schrodinger equation.
- Find the Hamiltonian of the system. Use Poisson brackets to obtain the Hamiltonian equations of motion.
- Verify that the Hamilton's equations imply the Euler Lagrange equation of motion.
Exclude node summary :
n
Exclude node links:
0
4920: QFT-HOME, 4727: Diamond Point
0