Notices
 

Browse & Filter

For page specific messages
For page author info
Enter a comma separated list of user names.
2654 records found.
Operations
Selected 20 rows in this page.  
Title+Summary Name Datesort ascending

Unbounded Intervals and Use of Fourier Transform

Node id: 1747page

We illustrate use of Fourier transform for problems involving infinite domains with example of free particle time dependent Schrodinger equation.

kapoor's picture 22-04-15 14:04:06 n

[NOTES/ODE-02005] Frobenius Method of Series Solution

Node id: 1749page
kapoor's picture 22-04-15 14:04:52 n

[NOTES/ODE-01001] Equations with Constant Coefficients

Node id: 1748page
kapoor's picture 22-04-15 14:04:09 n

[PSU/QM-06003] --- Uncertainty, Compatible observables

Node id: 1982page
kapoor's picture 22-04-14 20:04:40 n

[QUE/QM-06029]

Node id: 2733page

Let \(\chi,\phi, \psi\)  be a set of representative vectors of three unit rays in Hilbert space and let  \(\chi',\phi', \psi'\) be another set of representatives of the same rays. Prove that \[(\chi,\phi)(\phi, \psi)(\psi, \chi) = (\chi',\phi')(\phi', \psi')(\psi', \chi').\]

kapoor's picture 22-04-14 08:04:10 n

[QUE/QM-02001]

Node id: 1973page

       Let \(q,p\) be the coordinate and momentum operators and define
\(q,q^\dagger\) by $$ a = {1\over \sqrt{2m\omega \hbar}}( p-im\omega q) $$ $$
a^\dagger = {1\over \sqrt{2m\omega \hbar}}( p+im\omega q) $$ and $ N= a^\dagger
a $
                

  1.  Compute the commutator $ [ a, a^\dagger ]$ Use results in part (1)} and find the commutators $$[N,a]   \mbox{ and } [ N,a^\dagger]  $$
  2.  Express the harmonic oscillator Hamiltonian \begin{equation*} H = \frac{p^2}{2m} + \frac{1}{2}\, m \omega^2 q^2 \end{equation*} in terms of $a$ and $a^\dagger$.
  3. Show that \(H = \hbar\omega\Big(a^\dagger a + \frac{1}{2}\Big)\)

 

kapoor's picture 22-04-14 08:04:05 n

[QUE/QM-02002]

Node id: 1972page

\(\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}\)

  1.       Use position representation        \[ \hat{q} \to q ; \qquad p\to -i\hbar \pp{q} \]      for the operators  \(\hat{p},\hat{q}\)  and prove the following relations    \begin{equation}\label{qm-que-02001;1}      [ \hat{q},\hat{p}^N] = i N\hbar \hat{p}^{N-1}; \qquad\qquad       [\hat{p},\hat{q}^N]  =-i N\hbar \hat{q}^{N-1}.      \end{equation}       Note you could have equally well used the momentum representation  \[ \hat{q} \to  i\hbar \pp{p}\qquad \hat{p} \to p \]   
  2.       Prove the above commutators  \eqref{qm-que-02001;1} using canonical commutation relations,  \([q,p]=i\hbar\), only. Do  not use any  representation  for position or momentum operator.
kapoor's picture 22-04-14 08:04:33 n

[QUE/CM-01011] Periodic Motion

Node id: 1918page


Question : A particle of mass $m$ is moving in a potential $$ V(x) = \begin{cases} -\lambda x & x < 0 \\ \frac{1}{2}k x^2 & x > 0 \end{cases}$$ Find the turning points and the time taken for the particle to complete one oscillation.

{HSM 45} }

kapoor's picture 22-04-14 08:04:29 n

[QUE/CM-01006] Periodic Motion, Relativistic Oscillator

Node id: 1913page


Question: Show that the time period of a relativistic oscillator as  function of amplitude $a$ is given by $$ T\approx \frac{2\pi}{\omega}\left[ 1 + \frac{3\omega^2a^2}{16 c^2} + \cdots \right] $$ where the restoring force is $- kx$ and $k=m \omega2 $.

kapoor's picture 22-04-14 08:04:44 n

[QUE/CM-01007] Periodic Motion

Node id: 1914page

Question : Determine the period of oscillations of a simple pendulum ( a particle of mass $m$ suspended by a string of length $L$ in a gravitational field) as a function of the amplitude of the oscillations.} 

Answer : {$T= 2\pi \sqrt{(L/g)}(1 + \theta_0 ^2/16 + \cdots ) $ }

 

kapoor's picture 22-04-14 08:04:32 n

[QUE/CM-02023] Generalized potential for a charged particle in EM fields

Node id: 2232page

\(\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}\)

A point charge moves with velocity \(\vec{v}\) in presence of electric field \(\vec{E}\) and magentic field \(\vec{B}\). The Lorentz force on the charged particle is
\[\vec{F}= q\Big\{ \vec{E} + \frac{1}{c}\vec{v}\times\vec{B} \Big\}\]
In terms of the scalar potential \(\phi\) and vector  potential \(\vec{A}\) related to the electric and magnetic fields by
\[\vec{E}= -\nabla \phi- \frac{1}{c} \pp[\vec{A}]{t}, \quad
\vec{B}=\nabla\times \vec{A}.\]
the Lorentz force becomes \[\vec{F} = q\Big\{ - \nabla\phi -\frac{1}{c} \pp[\vec{A}]{t} +
\frac{1}{c} \vec{v}\times(\nabla \times \vec{A})\Big\} \]
Determine the generalzed potential for this system and write the Lagrangian.

kapoor's picture 22-04-14 08:04:16 n

[QUE/QFT-15003]

Node id: 2210page

Consider the pion decay process \( \pi^- \longrightarrow e^- + \bar{\nu}.\) Let
the fields for \(\pi^-, e^- \text{ and }\nu \) be denoted by \(\phi_{\pi^-}(x),
\psi_{e}(x) \text{ and } \psi_\nu (x)\) respectively.

(a) Which of the following interactions will contribute to the pion decay
process in the first order?

  1.   \(\phi_{\pi^-}^\dagger(x)\bar{\psi}_e(x) \gamma_\mu(1+\gamma_5) \psi_\nu(x) \)
  2.    \(\phi_{\pi^-}^\dagger(x)\bar{\psi}_\nu(x) \gamma_\mu(1+\gamma_5) \psi_e(x) \)
  3.    \(\phi_{\pi^-}(x)\bar{\psi}_e(x) \gamma_\mu(1+\gamma_5) \psi_\nu(x) \)
  4.    \(\phi_{\pi^-}(x)\bar{\psi}_\nu(x) \gamma_\mu(1+\gamma_5) \psi_e(x) \)

(b) Is there a term which will contribute to the decay \(\pi^+ \longrightarrow
e^+ \nu \)? If yes,  which one?
(c) Consider processes allowed by different terms (i)-(iv) and check if any of
known selection rules is violated by any of the four expressions (i)-(iv).

kapoor's picture 22-04-14 08:04:02 n

[QUE/QFT-15002] \(\Lambda \) Hyperon Decay

Node id: 2209page


The interaction of \(\Lambda^0\) hyperon, responsible for decay into a proton
and a \(\pi^-\), is given by \[ H_\text{int} =  \bar{\psi}_p(x) ( g -
g^\prime\gamma_5)\psi_\Lambda(x) \phi_\pi ^\dagger + h.c. \]
(a) Give examples of three virtual processes allowed in the first order of this interaction term.

(b) Show that the partial decay rate of \(\Lambda^0 \longrightarrow p + \pi^-\) is given by
\[ \Gamma = \frac{1}{4\pi}\frac{|\vec{p}|}{M_\Lambda}\left(|g|^2(E_p+M_p) + |g^\prime|^2
(E_p-M_p) \right)\]

Download attachment for full solution

kapoor's picture 22-04-14 07:04:38 n

[QUE/CM-03001]

Node id: 2016page

[A] Calculate the value of the action integral between the limits $t=0$
      and $t=T$ for a a particle falling under influence of gravity along the
      following three paths.

 (i)  for a fictitious motion with path given by $z= at.$
 (ii) for a second fictitious path given by $z=bt^3.$
 (iii) for the real motion $z={1\over 2} g t^2. $

      where the constants $a, b$ must be determined so that the initial and
      final positions coincide with the rules of variation in the action
      principle.

   [B] Check if  the action integral has smaller value for the real motion
      in(c) than the fictitious ones (a) and (b). Discuss the result you have
      obtained and write conclusions you may draw about the action principle.

kapoor's picture 22-04-14 07:04:19 n

[QUE/QM-06016]

Node id: 2003page

\(\newcommand{\average}[2]{\rangle#1|#2|#1\rangle}\) The state of a quantum system is represented by a two component vector \[ f = \begin{pmatrix}1+3i \\3-i \end{pmatrix}\] For the dynamical variable \(Y\) \[Y = \begin{pmatrix}0 & -i\\i  & 0\end{pmatrix}\] compute the average $\average{f}{Y},\average{f}{Y^2} $  and the uncertainty $\Delta Y$ for the
variable $Y$ where \begin{equation*} Y= \begin{pmatrix} 0 & -i \\ i &0      
\end{pmatrix} \end{equation*} Give your remarks, if any, on the answer you obtained.

kapoor's picture 22-04-14 07:04:19 n

[QUE/QM-06015]

Node id: 1992page

A particle has the  wave function     $$ \psi(x)= A\exp(-|x|/\alpha) .$$ compute the following quantities.    

  1. Find the probability that the momentum will lie between $p$ and $p=\Delta p$.
  2. Compute the uncertainties $\Delta x$ and $\Delta p$.
kapoor's picture 22-04-14 07:04:34 n

[QUE/QM-02003]

Node id: 1974page

  Let
      $$L_x =yp_z-zp_y,\ \  L_y=zp_x-xp_z, \ \ \mbox{ and } L_z=xp_y-yp_x $$  be the angular momentum operators. Prove any one of the following.
          $$ [ L_x, L_y] = i \hbar L_z $$
          $$ [ L_y, L_z] = i \hbar L_x $$
          $$ [ L_z, L_x] = i \hbar L_y $$
      Use the fundamental commutators,      \[[x,p_x]=i\hbar,\quad [y,p_y]=i\hbar,\quad [z,p_z]=i\hbar,\]        and the identities involving commutators.

kapoor's picture 22-04-14 07:04:50 n

[QUE/QFT-15007]

Node id: 2293page

Write Klein Gordon equation and the corresponding Lagrangian for a spin zero charged particle in presence an external electromagnetic field. Obtain the Hamiltonian. To the lowest order in \(e\), compute the scattering cross section for Coulomb scattering of a charged pion taking the vector potential to be that of a nucleus of charge density \(\rho(\vec{x})\). Write your answer for cross section in terms in of Fourier transform of \(\rho(\vec{x})\).

kapoor's picture 22-04-14 07:04:24 n

[QUE/QFT-15008], Neutral pion scattering ( Identical Particles)

Node id: 2292page

Assuming \(\frac{g}{4!} \pi^4(x)\) interaction for  neutral pions  of mass \(m\), find

  1.    transition probability per unit time per unit volume for \(\pi - \pi\) scattering 
  2.   compute the total cross section for the scattering process and show that  \[ \frac{d\sigma}{d\Omega}= \frac{g^2}{64\pi^2 E_\text{cm}^2}\]Be careful about normalization of two identical pion states.
kapoor's picture 22-04-14 07:04:33 n

[QUE/QFT-15009] Charged pion, \((\pi^+, \pi^-)\), scattering

Node id: 2291page

Assuming interactions of charged pions to be of the form \(\scr{L}_\text{int}
(x)= (g/4)(\pi(x)^+\pi(x)^-)^2\)  find

  1. the \(S\) matrix element for \(\pi-\pi\) scattering \[\pi^+ + \pi^-\longrightarrow \pi^+ + \pi^-\]
  2. transition probability per unit time per unit volume for \(\pi - \pi\) scattering.
  3. compute the total cross section for the scattering process and show that      \[ \frac{d\sigma}{d\Omega}= \frac{g^2}{64\pi^2 E_\text{cm}^2}\]
kapoor's picture 22-04-14 07:04:38 n

Pages

 
X