Notices
 

Browse & Filter

For page specific messages
For page author info
Enter a comma separated list of user names.
2654 records found.
Operations
Selected 20 rows in this page.  
Title+Summary Name Datesort ascending

[QUE/QFT-15010] \(\pi^+-\pi^0\) scattering

Node id: 2290page

Assuming interactions of charged pions to be of the form \(\scr{L}_\text{int} (x)= (g/4)(\pi(x)^+\pi(x)^0)^2\)  find

  1. the \(S\) matrix element for \(\pi-\pi\) scattering         \[\pi^+ + \pi^0 \longrightarrow \pi^+ + \pi^0\]
  2.  transition probability per unit time per unit volume for \(\pi - \pi\)  scattering.
  3. Compute the total cross section for the scattering process and show that  \[ \frac{d\sigma}{d\Omega}= \frac{g^2}{64\pi^2 E_\text{cm}^2}\]
kapoor's picture 22-04-14 07:04:03 n

[QUE/QFT-05003]

Node id: 2301page

Prove that the free particle solutions of Klein Gordon equation \(f_q(x)\), given by
\[ f_q(x) = \frac{1}{\sqrt{(2\pi)^3}} e^{-iqx},\]  obey the orthononality relations \[ \begin{eqnarray}   i \int d^3x f_q^*{x} \{\partial_0 f_p(x)\} - \{\partial _0 f_q(x)\} f_p^*(x) = 2\omega_q\delta(\vec{q}-\vec{p}). \end{eqnarray} \] and find the value of \( \int d^3x \big[f_q(x) (f_q(x) \{\partial_0 f_p(x)\} - \{\partial _0 f_q(x)\} f_p(x))\big]\)

                    

kapoor's picture 22-04-14 07:04:26 n

[QUE/QFT-05002]

Node id: 2300page

Starting from the Lagrangian for a complex scalar field obtain the
Hamiltonian for a free complex Klein Gordon field.
and show that quantized field obeys \(\begin{equation}\big[H, \phi(x)\big] = - i \big( \nabla^2- \mu^2\big) \phi^*(x) \end{equation}.\)

kapoor's picture 22-04-14 07:04:49 n

[QUE/QFT-05001]

Node id: 2299page


Starting from the Lagrangian for a complex scalar field obtain the Hamiltonian for a free complex Klein Gordon field.
Write ETCR and for the quantized field prove that \begin{equation}\label{EQ01}
\big[H, \pi(x)\big] = - i \big( \nabla^2- \mu^2\big) \phi^*(x) .
\end{equation} Does relation,\eqref{EQ01}, hold only as equal time commutator or does it hold for  \(H\) and \(\pi(x)\) at arbitrary different times ?  Explain your answer.
Use \eqref{EQ01} to derive the usual Euler Lagrange equation of motion for the Klein Gordon field.

kapoor's picture 22-04-14 07:04:32 n

[QUE/QFT-10001]

Node id: 2298page

\(\newcommand{\ket}[1]{|#1\rangle} \newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\)

For a real free Klein Gordon field, mass \(m\),  compute \[ \matrixelement{0}{\phi(x)\phi(y)}{\vec{k}, \vec{q}}\] and show that the result is  properly symmetrized wave function for two identical bosons with momenta \(\vec{q},\vec{p}\). Here \(\ket{\vec{k}, \vec{q}}\) is the state with two bosons with momenta \(\vec{k}, \vec{q}\)

kapoor's picture 22-04-14 07:04:59 n

[QUE/QFT-14001]

Node id: 2296page

   Prove that
  \(\begin{equation}
    \int_{t_0}^ t \, dt_1 \int_{t_0}^ {t_1} dt_2\, H^\prime_I(t_1)
      H^\prime_I(t_2) = \frac{1}{2}      \int_{t_0}^ t \, dt_1 \int_{t_0}^ t \,
       dt_2  T\big( H^\prime_I(t_1) H^\prime_I(t_2)\big)
       \end{equation}\)

kapoor's picture 22-04-14 07:04:17 n

[QUE/QFT-14002]

Node id: 2295page
kapoor's picture 22-04-14 07:04:07 n

[QUE/QFT-15006] Relativistic Coulomb scattering of Dirac Particle

Node id: 2294page

Write Dirac equation in external electromagentic potential  \(A_\mu(\vec{x})\). Assume the potentials for Coulomb interactions with a nucleus of charge \(Ze\) to be
\[ \vec{A}=0, \quad A_0 = \frac{Ze}{4\pi |\vec{x}|}.  \]
Show that the differential cross section for electron scattering from nucleus is
given by
\[\frac{d\sigma}{d\Omega}= \left(\frac{d\sigma}{d\Omega}\right)_\text{R} \Big(1-v^2\sin^2(\theta/2)\Big)\] where
\[\left(\frac{d\sigma}{d\Omega}\right)_\text{R} = \frac{Ze^2}{64\pi m^2v^4 \sin^4(\theta/2)}\]
is the Rutherford cross section for nonrelativistic Coulomb scattering.

kapoor's picture 22-04-14 06:04:22 n

[QUE/CM-01014]

Node id: 2427page

A rocket is projected vertically upwards in a uniform gravitaional field.  Set up and integrate the equations of motion to obtain relation between the mass  of the rocket and the velocity. You may assume that the mass is being loss at a  constant rate due to gases escaping from the rocket with constant velocity  $v^\prime$ relative to the rocket. For the rocket starting initially from rest, ith $v^\prime = 6800~$ft/sec and a mass lost per sec equal to $1/60$th of the initial mass show that in order to reach escape velocity the ratio of weight of the fuel to the weight of the empty rocket must be almost 300!

Goldstein


 

kapoor's picture 22-04-14 06:04:05 n

[QUE/CM-01013] Variable Mass Problems

Node id: 2426page

A sprinkler wagon wets asphalt on a hot summer day. the power of the mottor is barely great enough to over the combined friction of the ground and the wheels, of the air, and the axle bearings. The vehicle therefore behaves  as if under no forces. Let $m$ be the mass of the water in the water tank at any instant plus the constant mass of the empty vehicle. Let the amount of water  squirted out per unit time $\mu = -\dot{m}$ , be its exit velocity towards rear, $q$, a  seen from the wagon, or $v-q$  as seen from the street, $v$ be the speed of the vehicle. Then using Newton's second law the rate of change of momentum og the   water + wagon = Force on the wagon. or,      \begin{eqnarray}
          \dot{p} = 0 \\
          \frac{d}{dt}(m v) =0\\
          \dot{m} v + m \frac{dv}{dt} =0 \\
          or, m \frac{dv}{dt}= \mu v
\end{eqnarray} It would then appear that the acceleration of the wagon is independent of the
 exit velociy $q$. This is paradoxical. Give your comments.

Source:Sommerfeld


 

kapoor's picture 22-04-14 06:04:31 n

[QUE/QFT-15004]

Node id: 2368page

{The original four fermion interaction for beta decay of  neutron
 \[n \longrightarrow p + e^- + \bar{\nu} \]
 is of the of form
 \[ \bar{\psi}_p(x)\gamma_\mu\psi_n(x) \bar{\psi}_\nu(x) \gamma^\mu \psi_e(x) +  h.c.\]
Now consider other processes given below. Which of these processes (real or virtual) are permitted and which ones are not permitted by the above interaction in the first order?

  1.   \( \bar{p} \longrightarrow \bar{n} + e^-  +\bar{\nu} \);
  2.   \( \bar{p} \longrightarrow \bar{n} + e^-  +\nu \);
  3.   \( n \longrightarrow p + e^+  + \nu \);
  4.   \( p \longrightarrow n + e^+  + \bar{\nu} \);
  5.   \( \bar{n} \longrightarrow \bar{p} + e^+  + \nu \);
  6.   \( \bar{n} \longrightarrow \bar{p} + e^+  + \bar{\nu} \).


Give brief reason in each case.

kapoor's picture 22-04-14 06:04:21 n

[QUE/QFT-06002]

Node id: 2306page

\(\newcommand{\ket}[1]{|#1\rangle}
\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}
\)
For a real free Dirac field, mass \(m\),  compute \[ \matrixelement{0}{\psi(x)\psi(y)}{\vec{p},r; \vec{q},s}\] and show that the result is  properly anti-symmetrized wave function for two identical fermions with momenta \(\vec{p},r;\vec{q},s\) and  spins \(r,s\). Here \(\ket{\vec{k}, \vec{q}}\) is the state with two fermions with momenta \(\vec{p}, \vec{q}\) and spins \(r,s\).

kapoor's picture 22-04-14 06:04:49 n

[QUE/QFT-06003]

Node id: 2305page

\(\newcommand{\ket}[1]{|#1\rangle} \newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\)
Compute the matrix element  \[ \matrixelement{s,\vec{q}}{J_\mu(x)}{r,\vec{p}}\] where \(J_\mu(x)\) is the current for a Dirac particle and \( \ket{s,\vec{q}}\) and \(\ket{r,\vec{p}} \) denote  one particle states of spin half particle with spin and momenta as specified.

kapoor's picture 22-04-14 06:04:06 n

[QUE/QFT-06001]

Node id: 2304page


Let \(\Gamma\) denote a product of Dirac matrices. Define \(\widetilde{\Gamma}\) by \begin{equation*} \bar{u}(s,q) \widetilde{\Gamma}u(r,p) = (\bar{u}(r,p)^\dagger\Gamma u(s,q))^* . \end{equation*} Use the above definition of \(\widetilde{\Gamma}\) and show that

  1. \(\widetilde{\Gamma} = \gamma_0 \Gamma^\dagger \gamma_0. \)
  2.      \(\widetilde{\gamma^\mu} = \gamma^\mu \)
  3.     \(\widetilde{\gamma_5} = -\gamma_5\)
  4.     \(\widetilde{\gamma^\mu \gamma_5}= - \gamma^\mu \gamma_5\)

Compute \(\widetilde{\sigma}_{0k}\) and \(\widetilde{\sigma}_{ij}\) and hence show      that \(\widetilde{\sigma}_{\mu\nu}=\sigma_{\mu\nu}\)


kapoor's picture 22-04-13 22:04:49 n

[QUE/QFT-05005]

Node id: 2303page

\(\newcommand{\ket}[1]{|#1\rangle}
\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\)

For a real free Klein Gordon field, mass \(m\),  compute  \[ \matrixelement{0}{\phi(x)\phi(y)}{\vec{k}, \vec{q}}\] and show that the result is  properly symmetrized wave function for two identical bosons with momenta \(\vec{q},\vec{p}\). Here \(\ket{\vec{k}, \vec{q}}\) is the state with two bosons with momenta \(\vec{k}, \vec{q}\).

kapoor's picture 22-04-13 22:04:15 n

[QUE/QFT-05004]

Node id: 2302page

 Express the field momentum  \begin{equation*} P^k = \int d^3x \big(  \pi(x) \partial^k \phi(x) +  \pi^*(x)\partial^k \phi(x)^*\big)     \end{equation*}    in terms of creation and annihilation operators.

kapoor's picture 22-04-13 22:04:54 n

[QUE/CM-01008]

Node id: 2414page

Find potential if the force acting on a particle in one dimension is $$ F(x) =  - m \omega_0^2(x-2bx^3), b>0. $$ Determine the potential energy asuming $V_0=0$ and plot it as a function of \(x\). For what values of energies, is oscillatory motion possible? Show that the period of oscillations as a function of amplitude $a$ is  $$ T =\frac{2}{\omega_0}\int_{-a}^a \frac{dx}{(a^2-x^2)(1- b(a^2+x^2))} $$ and that for small $b$ we have $T = \frac{2\pi}{\omega_0}(1+ \frac{3}{4}b a^2).$


 

kapoor's picture 22-04-13 22:04:20 n

[QUE/CM-01011]

Node id: 2423page

An empty freight car, which is travelling along a horizontal track, passes under funnel filled with sand as shown in the diagram. The sand is released into the car at the rate  of $\dot{m}$. Find the force needed to keep the car at constant speed $v_0$.

Source{HSM 67}.


 

kapoor's picture 22-04-13 22:04:19 n

[QUE/CM-01010]

Node id: 2415page

Find the equilibrium position and the frequency of small oscillations about the equilibrium position for the potential $$ V(x)=   -V_0 a^2 \frac{a^2+x^2}{8a^4+x^4} .$$ [HSM 42(b)]


 

kapoor's picture 22-04-13 21:04:44 n

[QUE/QM-09011]

Node id: 2519page

Problem QM-09011
For Harmonic oscillator problem \[H = \frac{p^2}{2m} + \frac{1}{2}m  \omega^2x^2\]

(A) Write and solve the Heisenberg equations of motion for \(a, a^\dagger\) operators.

(B) Obtain the expectation values of unequal time commutators

  1.  \(\big[a(t_1), a(t_2)\big]\)
  2. \(\big[a(t_1), a^\dagger(t_2)\big]\)
  3. \(\big[a^\dagger(t_1), a^\dagger(t_2)\big]\)

        in the groundstate \(\vert0\rangle\).

(C) Use  your answers to compute the vacuum expectation values of time ordered products

  1. \(T\{ q(t_1)\,q(t_2)\}\)
  2. \(T\{q(t_1)\, p(t_2)\}\)
  3. \(T \{p(t_1)\,p(t_2)\}\).

 


 

kapoor's picture 22-04-13 21:04:51 n

Pages

 
X