Let
$$L_x =yp_z-zp_y,\ \ L_y=zp_x-xp_z, \ \ \mbox{ and } L_z=xp_y-yp_x $$ be the angular momentum operators. Prove any one of the following.
$$ [ L_x, L_y] = i \hbar L_z $$
$$ [ L_y, L_z] = i \hbar L_x $$
$$ [ L_z, L_x] = i \hbar L_y $$
Use the fundamental commutators, \[[x,p_x]=i\hbar,\quad [y,p_y]=i\hbar,\quad [z,p_z]=i\hbar,\] and the identities involving commutators.
Exclude node summary :
n
Exclude node links:
0
4727:Diamond Point
0





||Message]