|
[LECS/QM-11] TIme Dependent Sch\"{o}dinger equationNode id: 6315page |
|
24-06-24 11:06:43 |
n |
|
[LECS/QM-11] Time Dependent Schrodinger Equation in Coordinate RepresentationNode id: 6317page |
|
24-06-24 09:06:38 |
n |
|
[NOTES/QM-12001] Free Particle Energy Eigen functions and Eigen valuesNode id: 6186page$\newcommand{\DD}[2][]{\frac{d^2#1}{d#2^2}}\newcommand{\kbf}{{\mathbf k}}\newcommand{\xbf}{{\mathbf x}}\newcommand{\rbf}{{\mathbf r}}\newcommand{\Prime}{{^\prime}}$
The energy eigenvalues and eigenfunctions are obtained for a free particle in one dimension. Properties and delta function normalization are discussed. It is shown that the energy eigenvalue must be positive. The free particle solution in three dimension is briefly given. |
|
24-06-24 09:06:03 |
n |
|
[NOTES/QM-12004] Free Particle in Three DimensionsNode id: 6316page$\newcommand{\xbf}{\mathbf x}\newcommand{\kbf}{\mathbf k}\newcommand{\rbf}{\mathbf r}$
The energy eigen functions of free particle are given. These are found to be eigen functions momentum also. The energy eigen functions have infinite degeneracy. There an eigen function corresponding to each momentum direction. |
|
24-06-24 05:06:27 |
n |
|
[NOTES/QM-11002] Probability ConservationNode id: 4730page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}\newcommand{\dd}[2][]{\frac{d#1}{d#2}}\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}} \newcommand{\average}[2]{\langle#1|#2|#1\rangle} \newcommand{\Label}[1]{\label{#1}}$
Starting from the time dependent Schr\"{o}dinger equation, an equation of continuity \[{\partial\rho\over\partial t} + \vec{\nabla}.\vec{j}=0\] is derived. Physical interpretation of the continuity equation is given in analogy with charge conservation in electromagnetic theory. The equation of continuity represents conservation of probability in quantum mechanics. |
|
24-06-23 18:06:03 |
n |
|
[NOTES/QM-11006] Optics Mechanics Analogy Road to Wave MechanicsNode id: 4734page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}} \newcommand{\dd}[2][]{\frac{d#1}{d#2}} \newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}} \newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ Making use of analogy between optics ad mechanics we motivate the introduction of the Schrodinger equation. Here Fermi's "Lectures on Quantum Mechanics" has been followed very closely.. |
|
24-06-23 18:06:17 |
n |
|
[NOTES/QM-11005] TIme Dependent Schr\"{o}dinger Equation --- Propagator Node id: 4733page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}} \newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}\newcommand{\dd}[2][]{\frac{d#1}{d#2}}\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}\newcommand{\average}[2]{\langle#1|#2|#1\rangle} \newcommand{\dd}[2][]{\frac{d#1}{d#2}}\newcommand{\Label}[1]{\label{#1}}$
We discuss the solution of time dependent one particle Schrodinger equation and obtain an expression for the propagator giving the time development. |
|
24-06-23 18:06:49 |
n |
|
[NOTES/QM-11004] Time Reversal SymmetryNode id: 4732page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}\newcommand{\dd}[2][]{\frac{d#1}{d#2}}\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
Time reversal operation in quantum mechanics of one particle is discussed. |
|
24-06-23 18:06:29 |
n |
|
[NOTES/QM-11003] Schrodinger Equation for a Charged ParticleNode id: 4731page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$ $\newcommand{\Label}[1]{\label{#1}}$ $\newcommand{\Prime}{^{\prime}}$
Using the classical Hamiltonian and the correspondence rule \(\vec p \to -i\hbar \nabla\), the expression for the Hamiltonian operator for a charged particle is written giving the time dependent Schr\"{o}dinger equation. The Schrodinger equation retains its form under gauge transformations if the wave function is assumed to transform as \[ \psi(\vec{r},t) \to \psi^\prime (\vec{r},t) = e^{-i(q/c)\Lambda(\vec{r},t)}\psi(\vec{r},t). \] |
|
24-06-23 18:06:54 |
n |
|
[NOTES/QM-11001] Time Dependent Schrodinger Equation :Solution for Wave function at time \(t\)Node id: 4729page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle} \newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}} \newcommand{\dd}[2][]{\frac{d#1}{d#2}} \newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}} newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
For conservative systems, we show how solution of time dependent Schrodinger equation can be found by separation of variables. Explicit expression for the wave function at arbitrary time \(t\) is obtained in terms of energy eigenfunctions and eigenvalues. |
|
24-06-23 15:06:07 |
n |
|
[NOTES/QM-11007] Time Variation of Average ValuesNode id: 4735page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}} \newcommand{\dd}[2][]{\frac{d#1}{d#2}}\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}} \newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
Starting from the time dependent Schrodinger equation, it is proved that the average value a dynamical variable \(\hat F\)obeys the equation\begin{equation} {d\over dt}\, \langle \hat{F} \rangle = \,\langle{\partial\over \partial t} \hat{F} \rangle + {1\over i\hbar} \langle\, [\hat{F},\hat{H} ]\, \rangle.\end{equation} |
|
24-06-23 05:06:24 |
n |
|
[NOTES/QM-10004] Momentum RepresentationNode id: 4722page $\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}} \newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}\newcommand{\dd}[2][]{\frac{d#1}{d#2}}\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
The momentum representation is defined and its connection with the coordinate representations is discussed. The transformation bewteen the two is effected by \(\innerproduct{x}{p}\) which are just the momentum eigenfunctions in the coordinate representation. Delta function normalization and the box normalization is discussed for the momentum eigenfunctions. |
|
24-06-22 11:06:14 |
n |
|
[NOTES/QM-10001] Representations in an Inner Product SpaceNode id: 4719pageA brief account of representations in a finite dimensional vector spaces is presented. The use of an ortho norrnal basis along with Dirac notation makes all frequently used formula very intuitive. The formulas for representing a vector by a column vector and an operator by matrices are given. The results for change of o.n. bases are summarized. |
|
24-06-22 11:06:31 |
n |
|
[NOTES/QM-10002] Coordinate RepresentationNode id: 4720page $\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}} \newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}\newcommand{\dd}[2][]{\frac{d#1}{d#2}} \newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
The choice of orthonormal basis of eigenvectors of position operator gives rise to the coordinate representation. The wave function, being the expansion coefficient of state vector in this basis, gives the probability amplitude for outcomes of position measurements.In the coordinate representation the momentum operator assumes a simple form $\widehat{p} =-i\hbar \dd{x}$. |
|
24-06-22 11:06:09 |
n |
|
[NOTES/QM-09001] Unitary Operator for Time EvolutionNode id: 4678page $\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
That assumption that the superposition principle be preserved under time evolution leads to unitary nature of the them evolution operator. The state vector satisfies differential equation, the Schrodinger equation, with Hamiltonian as the generator of time evolution. |
|
24-06-22 09:06:43 |
n |
|
[NOTES/QM-09002] Time Variation of Average ValuesNode id: 4679page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
Assuming time development of states to be given by \[i\hbar \dd[\ket{\psi, t}]{t} = H \ket{\psi t}, \] an equation for time variation of average value of a dynamical variable is derived. Classical correspondence is used to identify the generator of time evolution with Hamiltonian. A dynamical variable not depending explicitly on time is a constant of motion if it commutes with the Hamiltonian. |
|
24-06-22 09:06:35 |
n |
|
[LECS/QM-10] Working with Representations Node id: 6314page |
|
24-06-22 06:06:06 |
n |
|
[NOTES/QM-10003] A Summary of Coordinate and Momentum RepresentationNode id: 4721page $\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}\newcommand{\matrixelement}[3] \langle#1|#2|#3\rangle} \newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}\newcommand{\dd}[2][]{\frac{d#1}{d#2}}\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ A tabular comparison of coordinate and momentum representations is presented. |
|
24-06-22 06:06:37 |
n |
|
[YMP/CM-08002] How good are different frames as inertial framesNode id: 6307page |
|
24-06-19 17:06:43 |
n |
|
[YMP/CM-08001] Coriolis Force --- Sideways deflection of a freely falling bodyNode id: 6306page$\newcommand{\Label}[1]{\label{#1}}\newcommand{\Prime}{{^\prime}}\newcommand{\pp}[2][]{\frac{\partial#1}{\partial #2}}\newcommand{\PP}[2][]{\frac{\partial^2#1}{\partial #2^2}}\newcommand{\dd}[2][]{\frac{d#1}{d #2}}\newcommand{\DD}[2][]{\frac{d^2#1}{d #2^2}}$
A body falling under the earth's gravitational field experiences a side ways deflection due to Coriolis force. An expression for this deflection is obtained and numerical values are estimated. |
|
24-06-19 17:06:02 |
n |