Notices
 

Browse & Filter

For page specific messages
For page author info
Enter a comma separated list of user names.
2651 records found.
Operations
Selected 20 rows in this page.  
Title+Summary Name Datesort ascending

QS 9: Transition amplitude or T-matrix

Node id: 1138page
pankajsharan's picture 24-07-04 13:07:07 n

QS 8: $\Omega^{(+)}$ and $S$ in energy basis

Node id: 1137page
[toc:0]
pankajsharan's picture 24-07-04 13:07:29 n

QS 7: Lippmann-Schwinger Equation

Node id: 1136page
pankajsharan's picture 24-07-04 13:07:31 n

QS 6: S-matrix

Node id: 1135page
pankajsharan's picture 24-07-04 13:07:41 n

QS 5: Moller Operators

Node id: 1134page
pankajsharan's picture 24-07-04 13:07:46 n

QS 4: Scattering States

Node id: 1133page
[toc:0]
pankajsharan's picture 24-07-04 13:07:36 n

QS 3: States that are free in the past

Node id: 1132page
pankajsharan's picture 24-07-04 13:07:39 n

QS 2: When is a particle free?

Node id: 1128page
pankajsharan's picture 24-07-04 13:07:46 n

Quantum Theory of Scattering

Node id: 3481collection

Pankaj Sharan

Physics Department, Jamia Millia Islamia

New Delhi

{1981-2013}

pankajsharan's picture 24-07-04 13:07:12 n

MathJax Quick Reference

Node id: 6325page

The following PDF document is from a link found using Google search.

ranjan's picture 24-07-04 08:07:44 n

Authoring Environment and Tools

Node id: 5394slideshow
ranjan's picture 24-07-04 08:07:11

[NOTES/QM-13003] Harmonic Oscillator ---- Eigenvalues and Eigenfucntions

Node id: 6323page


The steps for obtaining energy eigenvalues and eigenfunctions are given for a harmonic oscillator. The details can be found in most text books, e.g. Schiff,"Quantum Mechanics"

 

kapoor's picture 24-07-04 07:07:41 n

[NOTES/QM-13002] The S -matrix in One Dimensional Potential Problems

Node id: 6322page

S- matrix is defined for a particle  incident on a potential in one dimension. The transformation properties of the S-matrix under time reversal and parity are given.

 

kapoor's picture 24-07-04 07:07:59 n

[NOTES/QM-13001] Square Well Energy Eigenvalues and Eigenfunctions

Node id: 6321page

The energy eigenvalue problem for a particle in a square well is solved. The energy  eigenvalues are solutions of a transcendental equation which can be solved graphically.

kapoor's picture 24-07-04 05:07:55 n

[CHAT/SM-04001] Systems in Equilibrium with a Heat Reservoir

Node id: 6152page
kapoor's picture 24-06-30 04:06:49 n

[CHAT/CM-08007] Let's Talk --- Fundamental Interactions

Node id: 6221page

A short discussion of pseudo forces and fundamental interactions is given.

kapoor's picture 24-06-30 04:06:38 n

[TALK/CM-06001] Let's Talk --- Scattering

Node id: 6198page
kapoor's picture 24-06-27 19:06:48 n

[TALK/CM-06002] Let's Talk --- Potential Scattering

Node id: 6199page
kapoor's picture 24-06-27 19:06:24 n

[NOTES/QM-12003] Propagator for Free Particle

Node id: 6189page

The Green function and the propagator for time dependent Schr\:{o}dinger equation are defined. The time dependent Schr\"{o}dinger equation is soled to obtain the solution for propagator.

kapoor's picture 24-06-24 17:06:48 n

[LECS/QM-12] Free Particle

Node id: 6318page
kapoor's picture 24-06-24 17:06:53 n

Pages

 
X