|
QS 9: Transition amplitude or T-matrixNode id: 1138page$\newcommand{\kk}[1]{|#1\rangle} \newcommand{\bb}[1]{\langle #1} \newcommand{\dd}[1]{\delta_{#1}} \newcommand{\molp}{\Omega^{(+)}} $ |
|
24-07-04 13:07:07 |
n |
|
QS 8: $\Omega^{(+)}$ and $S$ in energy basisNode id: 1137page[toc:0]
$\newcommand{\kk}[1]{|#1\rangle} \newcommand{\bb}[1]{\langle #1} \newcommand{\dd}[1]{\delta_{#1}} \newcommand{\molp}{\Omega^{(+)}} $ |
|
24-07-04 13:07:29 |
n |
|
QS 7: Lippmann-Schwinger EquationNode id: 1136page$\newcommand{\h}{{\mathcal H}} \newcommand{\molp}{\Omega^{(+)}} \newcommand{\molm}{\Omega^{(-)}} \newcommand{\molpm}{\Omega^{(\pm)}} \newcommand{\dydxt}[2]{\frac{d#1}{d#2}} \newcommand{\dydx}[2]{\frac{\partial#1}{\partial#2}}$ |
|
24-07-04 13:07:31 |
n |
|
QS 6: S-matrixNode id: 1135page$\newcommand{\molp}{\Omega^{(+)}} \newcommand{\molm}{\Omega^{(-)}} \newcommand{\molpm}{\Omega^{(\pm)}}$ |
|
24-07-04 13:07:41 |
n |
|
QS 5: Moller OperatorsNode id: 1134page$\newcommand{\h}{{\mathcal H}} \newcommand{\molp}{\Omega^{(+)}} \newcommand{\molm}{\Omega^{(-)}} \newcommand{\molpm}{\Omega^{(\pm)}}$ |
|
24-07-04 13:07:46 |
n |
|
QS 4: Scattering StatesNode id: 1133page[toc:0]
$\newcommand{\h}{{\mathcal H}} \newcommand{\molp}{\Omega^{(+)}} \newcommand{\molm}{\Omega^{(-)}} \newcommand{\molpm}{\Omega^{(\pm)}}$ |
|
24-07-04 13:07:36 |
n |
|
QS 3: States that are free in the pastNode id: 1132page$\newcommand{\h}{{\mathcal H}}$ |
|
24-07-04 13:07:39 |
n |
|
QS 2: When is a particle free?Node id: 1128page$\newcommand{\dydxt}[2]{\frac{d#1}{d#2}} \newcommand{\dydx}[2]{\frac{\partial#1}{\partial#2}}$ |
|
24-07-04 13:07:46 |
n |
|
Quantum Theory of ScatteringNode id: 3481collectionPankaj Sharan
Physics Department, Jamia Millia Islamia
New Delhi
{1981-2013} |
|
24-07-04 13:07:12 |
n |
|
MathJax Quick ReferenceNode id: 6325pageThe following PDF document is from a link found using Google search. |
|
24-07-04 08:07:44 |
n |
|
Authoring Environment and ToolsNode id: 5394slideshow |
|
24-07-04 08:07:11 |
|
|
[NOTES/QM-13003] Harmonic Oscillator ---- Eigenvalues and EigenfucntionsNode id: 6323page $\newcommand{\Label}[1]{\label{#1}}\newcommand{\Prime}{^\prime}}\newcommand{\pp}[2][]{\frac{\partial#1}{\partial #2}}\newcommand{\PP}[2][]{\frac{\partial^2#1}{\partial #2^2}}\newcommand{\dd}[2][]{\frac{d#1}{d #2}} \newcommand{\DD}[2][]{\frac{d^2#1}{d #2^2}}$ The steps for obtaining energy eigenvalues and eigenfunctions are given for a harmonic oscillator. The details can be found in most text books, e.g. Schiff,"Quantum Mechanics"
|
|
24-07-04 07:07:41 |
n |
|
[NOTES/QM-13002] The S -matrix in One Dimensional Potential ProblemsNode id: 6322pageS- matrix is defined for a particle incident on a potential in one dimension. The transformation properties of the S-matrix under time reversal and parity are given.
$\newcommand{\Label}[1]{\label{#1}}\newcommand{\Prime}{^\prime}}\newcommand{\pp}[2][]{\frac{\partial#1}{\partial #2}}\newcommand{\PP}[2][]{\frac{\partial^2#1}{\partial #2^2}}\newcommand{\dd}[2][]{\frac{d#1}{d #2}} \newcommand{\DD}[2][]{\frac{d^2#1}{d #2^2}}$ |
|
24-07-04 07:07:59 |
n |
|
[NOTES/QM-13001] Square Well Energy Eigenvalues and EigenfunctionsNode id: 6321pageThe energy eigenvalue problem for a particle in a square well is solved. The energy eigenvalues are solutions of a transcendental equation which can be solved graphically. $\newcommand{\dd}[2][]{\frac{d#1}{d #2}} \newcommand{\DD}[2][]{\frac{d^2#1}{d #2^2}}$ |
|
24-07-04 05:07:55 |
n |
|
[CHAT/SM-04001] Systems in Equilibrium with a Heat ReservoirNode id: 6152page |
|
24-06-30 04:06:49 |
n |
|
[CHAT/CM-08007] Let's Talk --- Fundamental InteractionsNode id: 6221pageA short discussion of pseudo forces and fundamental interactions is given. |
|
24-06-30 04:06:38 |
n |
|
[TALK/CM-06001] Let's Talk --- ScatteringNode id: 6198page |
|
24-06-27 19:06:48 |
n |
|
[TALK/CM-06002] Let's Talk --- Potential ScatteringNode id: 6199page |
|
24-06-27 19:06:24 |
n |
|
[NOTES/QM-12003] Propagator for Free ParticleNode id: 6189page$\newcommand{\Prime}{{^\prime}} \newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}} \newcommand{\xbf}{{\mathbf x}}$
The Green function and the propagator for time dependent Schr\:{o}dinger equation are defined. The time dependent Schr\"{o}dinger equation is soled to obtain the solution for propagator. |
|
24-06-24 17:06:48 |
n |
|
[LECS/QM-12] Free ParticleNode id: 6318page |
|
24-06-24 17:06:53 |
n |