|
[NOTES/EM-03017] Potential Energy of a Dipole in External FieldNode id: 5968pageWe derive expressions for force, potential energy and torque on a dipole in electric field. |
|
23-11-02 15:11:25 |
n |
|
[NOTES/EM-04016] Boundary Condition on Interface of Two MediaNode id: 5986pageUsing Stokes theorem and Maxwell's equation \(\text{curl} \vec E =0\) it is proved that the tangential component of the electric field vanishes outside, just near the surface, vanishes. |
|
23-11-02 10:11:41 |
n |
|
[NOTES/EM-04012] Pressure on A Charged Conducting SurfaceNode id: 5941pageIn this section the pressure due to a surface charge density \(\sigma\) on closed a conducting surface is computed and is shown to be \begin{equation*} \text{Force per unit area}= \frac{\sigma^2}{2\epsilon_0}. \end{equation*} |
|
23-11-01 20:11:48 |
n |
|
[NOTES/EM-07013] Equation of Continuity and RelativityNode id: 5919page
The equation of continuity appears in different branches of physics. It represents a local conservation law. In order to be consistent with requirement if special relativity every conserved quantity must come with a current which gives the flow of the conserved quantity across a surface and the two must obey equation of continuity. In this section we discuss these aspects of conservation laws.
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}} \newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ |
|
23-10-31 22:10:06 |
n |
|
Optics of Moving SourcesNode id: 4290page |
|
23-10-30 07:10:56 |
n |
|
Dispersion and Absorption of LightNode id: 4289page |
|
23-10-30 07:10:12 |
n |
|
Polarization of LightNode id: 4281page |
|
23-10-30 07:10:59 |
n |
|
Diffraction of lightNode id: 4278page |
|
23-10-30 07:10:25 |
n |
|
Interference of lightNode id: 4277page |
|
23-10-30 07:10:16 |
n |
|
Photometry and Geometrical OpticsNode id: 4276page |
|
23-10-30 07:10:49 |
n |
|
Electomagnetic waves, radiationNode id: 1326page$\renewcommand{\vec}[1]{\mathbf{#1}}$
- Phase velocity of an electromagnetic wave:$$v= \frac{c}{\sqrt{\varepsilon \mu}},$$ where $$c= \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$$
- In a travelling electromagnetic wave:$$E\sqrt{\varepsilon \varepsilon_0} = H\sqrt{\mu \mu_0}.$$
- Space density of the energy of an electromagnetic field:$$ \omega = \frac{\vec{E}.\vec{D}}{2}+\frac{\vec{B}.\vec{H}}{2}.$$
- Flow density of electromagnetic energy, the Poynting vector:$$\vec{S}=\vec{E}\times\vec{H}.$$
|
|
23-10-30 07:10:08 |
y |
|
Elastic waves, Acoustic Node id: 1325page$\renewcommand{\vec}[1]{\mathbf{#1}}$
- Equations of plane and spherical waves:$$\xi = a\cos(\omega t - kx), \xi = \frac{a_0}{r} \cos (\omega t - kr). $$ In the case of a homogeneous absorbing medium the factors $e^{-\gamma x}$ and $e^{-\gamma r}$ respectively appear in the formulas, where $\gamma$ is the wave damping coefficient.
- Wave equation:$$ \frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi }{\partial y^2} + \frac{\partial^2 \xi}{\partial z^2} = \frac{1}{v^2}\frac{\partial^2\xi}{\partial t^2}$$
|
|
23-10-30 07:10:55 |
y |
|
Electric oscillations Node id: 1324page$\renewcommand{\vec}[1]{\mathbf{#1}}$
Damped oscillation in a circuit $$q=q_m e^{-\beta t} \cos(\omega t+ \alpha),$$ where $$\omega= \sqrt{ \omega ^2_0 -\beta^2, \omega_0=\frac{1}{\sqrt{LC}}}, \beta=\frac{R}{2L}.$$ |
|
23-10-30 07:10:48 |
y |
|
Mechanical oscillations Node id: 1323page$\renewcommand{\vec}[1]{\mathbf{#1}}$
- Harmonic motion equation and its solution:$$\ddot{x} +{\omega}^2_0 x=0, x= a\cos(\omega_0 t+ \alpha),\tag{1} $$where $\omega_0$ is the natural oscillation frequency.
- Damped oscillation equation and its solution:$$ \ddot{x}+2 \beta \dot{x} +\omega^2_0 x=0, x=a_0 e^{-\beta t} \cos(\omega t + \alpha)$$ where $\beta$ is the damping coefficient, $\omega$ is the frequency of damped oscillations:$$ \omega = \sqrt{\omega^2_0 - \beta^2}.$$
|
|
23-10-30 07:10:30 |
y |
|
Electromagnetic induction, Maxwell's equations Node id: 1319page$\renewcommand{\vec}[1]{\mathbf{#1}}$
- Faraday's law of electromagnetic induction:$$\mathscr{C}_i=-\frac{d\Phi}{di}\tag{1}$$
- In the case of a solenoid and doughnut coil:$$\Phi=N \Phi_{1} \tag{2}$$ where N is the number of turns, is the magnetic flux through each turn.
- Inductance of a solenoid:$$L=\mu \mu_0 n^2 V \tag{3}$$
- Maxwell's equations in differential form: $$\vec{\nabla} \times \vec{E} = - \frac{\partial \vec{B}}{\partial t}, \vec{\nabla}.\vec{B}=0, \\ \vec{\nabla} \times \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}, \vec{\nabla}.\vec{D}=\rho,$$ where $\vec{\nabla} \times \equiv$ rot (the rotor) and $\vec{\nabla}. \equiv$ div (the divergence).
|
|
23-10-30 07:10:37 |
y |
|
Motion of charged particles in electric and magnetics fieldsNode id: 1320page$\renewcommand{\vec}[1]{\mathbf{#1}}$
- Lorentz force:$$\vec{F}=q\vec{E} + q\vec{v}\times\vec{B}.$$
- Motion equation of a relativistic particle:$$\frac{d}{dt} \frac{m_0 \vec{v}}{\sqrt{1-(\frac{v}{c})^2}}=\vec{F}.$$
- Period of revolution of a charged particle in a uniform magnetic field:$$T=\frac{2\pi m}{qB},$$ where $m$ is the relativistic mass of the particle,$$m=m_0/\sqrt{1-\left (\frac{v}{c}\right )^2}.$$
|
|
23-10-30 07:10:26 |
y |
|
Electric currentNode id: 1317page$\renewcommand{\vec}[1]{\mathbf{#1}}$
- Ohm's law for an inhomogeneous segment of a circuit:$$ I=\frac{V_{12}}{R}=\frac{\phi_{1}-\phi_{2} + \mathscr{E}_{12}}{R},$$ where $V_{12}$ is the voltage drop across the segment.
- Differential form of Ohm's law:$$\vec{j}=\sigma (\vec{E} + \vec{E}^\star),$$ where $\vec{E}^\star$ is the strength of a field produced by extraneous forces.
- Kirchhoff's laws (for an electric circuit): $$ \sum I_k=0, \sum I_k R_k= \sum \mathscr{E}_k.$$
- Power P of current and thermal power Q: $$P=VI=(\phi_1 - \phi_2 +\mathscr{E}_{12})I, Q=RI^2.$$
|
|
23-10-30 07:10:42 |
y |
|
Constant magnetic field, magneticsNode id: 1318page$\renewcommand{\vec}[1]{\mathbf{#1}}$
- Magnetic field of a point charge $q$ moving with non-relativistic velocity $\vec{v}$: $$\vec{B}=\frac{\mu_0}{4\pi}\frac{q\, \vec{v}\times \vec{r}}{r^3}.$$
- Biot-Savart law: $$d\vec{B}=\frac{\mu_0}{4\pi} \frac{\vec{j}\times\vec{r}}{r^3}dV, d\vec{B}=\frac{\mu_0}{4\pi}\frac{I, d\vec{l}\times\vec{r}}{r^3}.$$
- Circulation of a vector $\vec{B}$ and Gauss's theorem for it: $$\oint \vec{B}.d\vec{r}=\mu_0 I, \oint \vec{B}.d\vec{S}=0.$$
- Lorentz force:$$\vec{F}=q\vec{E}+q\vec{v}\times\vec{B}.$$
- Ampere force:$$d\vec{F}=\vec{j}\times\vec{B}dV, d\vec{F}=I d\vec{I}\times\vec{B}.$$
|
|
23-10-30 07:10:19 |
y |
|
Electric capacitance energy of an electric fieldNode id: 1316page$\renewcommand{\vec}[1]{\mathbf{#1}}$
- Capacitance of a parallel-plate capacitor:$$C=\varepsilon {\varepsilon}_0 \frac{S}{d}$$
- Interaction energy of a system of point charges:$$W=\frac{1}{2}\sum q_i \phi_{i}. $$
- Energy of a charged capacitor:$$W=\frac{qV}{2}=\frac{q^2}{2C}=\frac{CV^2}{2}$$
|
|
23-10-30 07:10:44 |
y |
|
Conductors and dielectrics in an electric fieldNode id: 1315page$\renewcommand{\vec}[1]{\mathbf{#1}}$
- Electric field strength near the surface of a conductor in vacuum: $$E_n = \frac{\sigma}{{\varepsilon}_0}$$
- Flux of polarization $\vec{P}$ across a closed surface: $$\oint \vec{P}.d\vec{S}=-q^\prime,$$ where $q^\prime$ is the algebraic sum of bound charges enclosed by this surface.
- Vector $\vec{D}$ and Gauss's theorem for it: $$\vec{D}=\varepsilon \vec{E}+\vec{P}, \oint \vec{D}.d\vec{S}=q,$$ where $q$ is the algebraic sum of extraneous charges inside a closed surface.
|
|
23-10-30 07:10:20 |
y |