Notices
 

[NOTES/QM-10002] Coordinate Representation

For page specific messages
For page author info

Category: 

The choice of orthonormal basis of eigenvectors of position operator gives rise to the coordinate representation. The wave function, being the expansion coefficient of state vector in this basis, gives the probability amplitude for  outcomes of position measurements.In the coordinate representation the momentum  operator assumes a simple form $\widehat{p} =-i\hbar \dd{x}$.

A Useful result 

The canonical commutation relation $[\widehat{x},\widehat{p}]=i\hbar$ can be used to show that if $x_0$ is an eigenvalue of $\widehat{x}$, $x_0+a$, $a\in{\mathbb R}$, is also an eigenvalue. This is most easily seen by making use of the
\begin{equation} \widehat{x} \exp(-ia\widehat{p}/\hbar) = \exp(-ia\widehat{p}/\hbar)(\widehat{x}+a) \label{EQ01}. \end{equation}
here $a$ is a real number. To see this note that $U(a)\equiv \exp(-ia\widehat{p}/\hbar)$ is a unitary operator. If $\ket{x_0}$ is an eigenvector of $\widehat{x}$ with eigenvalue $x_0$, $U(a)\ket{x_0}$ is an eigenvector of $\widehat{x}$ with eigenvalue $x_0+a$. Using \eqref{EQ01} we get \begin{eqnarray} \widehat{x} \Big(U(a)\ket{x_0}\Big) &=& \exp(-ia\widehat{p}/\hbar)(\widehat{x}+a)\ket{x_0}, \label{EQ02}\\ &=& (x_0+a) \Big(U(a)\ket{x_0}\Big) \label{EQ03}. \end{eqnarray} This shows that $(x_0+a)$ is an eigenvalue of $\widehat{x}$ with $U(a) \ket{x_0}$ as the eigenvector. Since $a$ is any real number, all real numbers are eigenvalues of the position operator $\widehat{x}$. A similar argument shows that all real values are allowed as eigenvalues of the momentum operator $\widehat{p}$.

Coordinate representation --- One dimension

We shall first consider a particle in one dimension. To set up the coordinate representation, we use the eigenvectors of position operator $\widehat{x}$ as o.n. basis. We have seen that the eigenvalues of $\widehat{x}$ are all real values in range $(-\infty, \infty)$. Let $x$ be one such eigenvalue and $\ket{x}$ be the corresponding eigenvector, {\it i.e.}, \begin{equation} \widehat{x} \ket{x} = x \ket{x}. \label{EQ04} \end{equation} The orthogonality property of the eigenvectors now assumes the form \begin{equation} \innerproduct{x^{\prime\prime}}{x^\prime}= \delta(x^{\prime\prime}-x^\prime) \label{EQ05}, \end{equation} and the completeness relation $\sum_n \ket{n}\bra{n} =\widehat{I}$ takes the form \begin{equation} \int_{-\infty}^\infty \ket{x}\bra{x}\, dx = \widehat{I}.\label{EQ06} \end{equation} where $\widehat{I}$ denotes the identity operator. Everywhere the sum $\sum_n$ over all eigenvalues is replaced by integration, $\int dx$, as the eigenvalues are now continuous. This choice of the eigenvectors \(\{\ket{x}\}\) as a basis leads to the coordinate representation or the position representation, also known as the \it Schr\"{o}dinger representation. Thus an expansion of abstract vector $\ket{\psi}$ in the basis $\big\{\ket{x}\big\}$ becomes \begin{equation} \ket{\psi} = \int \, dx \ket{x}\innerproduct{x}{\psi},\label{EQ07} \end{equation} and the abstract vector $\ket{\psi}$ is represented by the numbers $\innerproduct{x}{\psi}$, with $x$ having values in real numbers. Instead of arranging all the components of $\ket{\psi}$ in form of a column, we regard them as values of a function of $x$: \begin{equation} \innerproduct{x}{\psi} = \psi(x) \label{EQ08}. \end{equation}

  • Due to the fact that the eigenvalues of $x$ are continuous, it is not meaningful to ask for probability that the position has a single value $x_0$; instead we must ask for probability position has a value in the specified range, such as $x$ and $x+ dx$.}

The third postulate tells us that this probability is given by \begin{equation} |\innerproduct{x}{\psi}|^2 dx = |\psi(x)|^2dx \label{EQ09}. \end{equation} Thus the function $\psi(x)$, to be called the {\bf wave function}, gives the probability density of position. The Parseval relation \begin{equation} \innerproduct{\psi}{\psi} = \int_{-\infty}^\infty |\psi(x)|^2\, dx \label{EQ10} \end{equation} ensures that, for normalized state vector \(\ket{\psi}\), the total probability will be one. Every operator $\widehat{T}$ is represented as a infinite dimensional matrix with continuous row and column indices $\big\{ ({\sf T})_{x,x^\prime}=\matrixelement{x}{\widehat{T}}{x^\prime} \big\}$. The action of operator $\widehat{T}$ on wave function $\psi(x)$ is then given by \begin{equation} \widehat{T} \psi(x) =\sum_{x^\prime} ({\sf T})_{x,x^\prime}\, \psi(x^\prime) =\int_{-\infty}^\infty \matrixelement{x}{\widehat{T}}{x^\prime}\, \psi(x^\prime)\, dx^\prime \label{EQ20}. \end{equation} The operator $\widehat{x}$ will be represented by an infinite dimensional diagonal matrix having rows and columns labelled by continuous indices $x^\prime, x^{\prime\prime}$ and the matrix elements of $x$ are \begin{equation} \matrixelement{x^\prime}{\widehat{x}}{x^{\prime\prime}} = x^\prime \delta(x^{\prime\prime}- x^\prime)\label{EQ11}. \end{equation} Using the canonical commutation relation, $[\widehat{x},\widehat{p}]=i\hbar$, the matrix elements of the momentum operator can be worked out and is given by \begin{equation} \matrixelement{x^\prime}{\widehat{p}}{x^{\prime\prime}} = -i\hbar\dd{x^\prime} \delta(x^{\prime\prime}- x^\prime)\label{EQ12}. \end{equation}

Action of position and momentum operators

The action of position and momentum operators is given as matrix multiplication by considering these operators as matrices with continuous row and column indices: \begin{eqnarray} \widehat{x} \psi(x) &=&\int_{-\infty}^\infty \matrixelement{x}{\widehat{x}}{x^\prime}\psi(x^\prime)\, dx^\prime \label{EQ13}\\ &=& \int_{-\infty}^\infty x\delta(x-x^\prime)\psi(x^\prime)\, dx^\prime \label{EQ18}\\ &=& x \psi(x) \end{eqnarray} and \begin{eqnarray} \widehat{p} \psi(x) &=& \int_{-\infty}^{\infty} \matrixelement{x}{\widehat{p}}{x^\prime}\psi(x^\prime)\, dx^\prime \label{EQ14}\\ &=& \int_{-\infty}^{\infty} -i\hbar\delta(x-x^\prime)\psi(x^\prime)\, dx^\prime \label{EQ15}\\ &=& -i\hbar \dd[\psi(x)]{x} \label{EQ17}. \end{eqnarray} Thus, in the position representation we have $\widehat{p} \to -i\hbar\dd{x}$. An operator corresponding to a dynamical variable can be obtained by making a replacement \begin{equation} \widehat{x} \to x, \qquad \qquad \widehat{p} \to -i\hbar \dd{x}.\label{EQ21} \end{equation}

Hamiltonian in coordinate representation

The most important dynamical variable for a system is the Hamiltonian \begin{equation} H =\frac{p^2}{2m} + V(x) \label{EQ22}. \end{equation} and the corresponding operator is \begin{equation} \widehat{H} = \frac{\widehat{p}}{2m} + V(\widehat{x}) = -\frac{\hbar^2}{2m}\DD{x} + V(x).\label{EQ23} \end{equation}

Wave function as position probability density

Let $\ket{\psi}$ denote the state vector of a particle and $\psi(x)=\innerproduct{x}{\psi}$ be the corresponding wave function. We now come to the physical interpretation of the coordinate space wave function $\psi(x)$. Note that $\psi(x)$ is the coefficient of $\ket{x}$ in the expansion of the state vector $\ket{\psi}$: \begin{equation} \ket{\psi} = \int \ket{x} \innerproduct{x}{\psi} \, dx = \int \psi(x) \ket{x} \, dx \label{EQ29}. \end{equation} The third postulate tells us that the expansion coefficient will give the probability amplitude for position and the the absolute square $|\psi(x)|^2$ gives the probability density for position. Thus the probability of finding position in the range $x, x+dx$ is $|\psi(x)|^2 dx$. The integral $\int_a^b |\psi(x)|^2\,dx $ is the probability that the particle will be found in the interval $(a,b)$.

Several degrees of freedom

Generalization to a particle in three dimensions is straightforward. The basis vectors $\ket{\vec{r}}$ in this case are simultaneous eigenvectors of position operators $\widehat{x}, \widehat{y},\widehat{z}$: \begin{equation} \widehat{x} \ket{\vec{r}} = x \ket{\vec{r}}, \qquad \widehat{y} \ket{\vec{r}} = y \ket{\vec{r}}, \qquad \widehat{z} \ket{\vec{r}} = z \ket{\vec{r}}.\label{EQ24} \end{equation} The orthogonality and completeness relations assume the form \begin{equation} \innerproduct{\vec{r}^{\,\prime\prime}}{\vec{r}^{\,\prime}} = \delta (\vec{r}^{\,\prime\prime}-\vec{r}^{\,\prime}), \qquad \int d^3\vec{r}\, \ket{\vec{r}}\bra{\vec{r}} = \widehat{I}. \label{EQ25s} \end{equation} Expansion of an arbitrary $\ket{\psi}$ in the basis $\ket{\vec{r}}$ assumes the form \begin{equation} \ket{\psi} = \int \ket{\vec{r}} \, \innerproduct{\vec{r}}{\psi} d^3r. \label{EQ26} \end{equation} We call the function $\innerproduct{\vec{r}}{\psi}$ the wave function and also denote it by $\psi(\vec{r})$. The absolute square of wave function gives the probability density; $|\psi(\vec{r})|^2 dV$ is the probability density for the particle to be a small volume $dV$ at position \(\vec{r}\). The corresponding probability for a a particle to be in a finite volume V is obtained integrating over the volume $V$ and is given by \begin{equation} \iiint_V |\innerproduct{\psi}{\vec{r}}|^2\, d^3r = \iiint_V |\psi(\vec{r})|^2\, d^3r \label{EQ27}. \end{equation} The action of position operators $\widehat{\vec{r}}$ is to multiply by $\vec{r}$ and that of momentum operators is given by $\widehat{\vec{p}} \to -i\hbar \nabla$. Thus \begin{equation} \widehat{\vec{r}} \,\psi(\vec{r}) =\vec{r}\, \psi(\vec{r}), \qquad \widehat{\vec{p}}\, \psi(\vec{r}) =-i\hbar \nabla \psi(\vec{r}) \label{EQ28}. \end{equation}

Exclude node summary : 

n

4727: Diamond Point, 4909: QM-HOME-I

700
0
 
X