Notices
 

[NOTES/QM-11005] TIme Dependent Schr\"{o}dinger Equation --- Propagator

For page specific messages
For page author info

We discuss the solution of time dependent one particle Schrodinger equation and obtain an expression for the propagator giving the time development.

The propagator, \(K(x,t;x_0,t_0)\), for time dependent Schr\"{o}dinger equation \begin{equation} i \hbar \dd[\psi(x,t)]{t} = H \psi(x,t). \Label{EQ05} \end{equation} is defined as the solution of \begin{equation} i\hbar \dd{t}K(x,t;x_0,t_0) = H K(x,t;x_0,t_0) \Label{EQ01}. \end{equation} obeying the initial condition \begin{equation} \lim_{t\to t_0} K(x,t;x_0,t_0) = \delta(x-x_0). \Label{EQ02} \end{equation} To describe in words, the propagator $K(x,t; x_0,t_0)$ is seen to coincide with the wave function of a particle at time \(t\) evolving from the state having precise position $x_0$ at time $t_0$. If the wave function at time \(t_0\) the wave function is known to be $\psi_0(x)$, the wave function at time $t$, $\psi(x,t)$ can be written in terms of propagator as \begin{equation} \psi(x,t) = \int K(x,t;x_0,t_0)\psi_0(x_0) dx_0. \Label{EQ03} \end{equation} That $\psi(x,t)$ satisfies initial condition \begin{equation} \lim_{t \to t_0} \psi(x,t) = \psi_0(x) \Label{EQ04} \end{equation} is obvious from Eq. \eqref{EQ02}. Also it follows from \eqref{EQ01} and that $\psi(x,t)$ is a solution of the time dependent Schr\"{o}dinger equation \eqRef{EQ05}. To obtain an expression for propagator, we recall that the most general solution of the Schr\"{o}dinger equation is given by \begin{equation} \sum c_n e^{-iE_nt/\hbar} u_n(x). \Label{EQ06} \end{equation} in terms of the energy eigenvalues $E_n$ and the energy eigenfunctions $u_n(x)$. Writing the propagator, $K(x,t;x_0,t_0)$, equal to the above expression \eqref{EQ06} and setting $t=t_0$ gives \begin{equation} \delta(x-x_0) = \sum c_n u_n(x) \Label{EQ07}. \end{equation} Multiplying by $u_k^*(x)$, integrating over $x$ and using orthogonality property of the energy eigenfunctions we get \begin{equation} c_k = u^*_k(x) e^{iE_kt/\hbar} \Label{EQ08}. \end{equation} Substituting for the coefficients $c_n$ in \eqref{EQ06}, the propagator takes the form \begin{equation} K(x,t; x_0,t_0) = \sum_n c_n e^{-iE_nt/\hbar} u_n(x) = \sum_n e^{-iE_n(t-t_0)/\hbar} u_n(x_0) u_n(x) . \Label{EQ09} \end{equation} If we substitute \eqref{EQ09} in \eqref{EQ03}, we get \begin{equation} \Label{EQ12} \psi(\vec{r},t) = \sum_{k=1}^{\infty} c_k u_k(\vec{r}) \exp(-iE_kt)/\hbar)\psi(\vec{r},t) = \sum_{k=1}^{\infty} (u_k, \psi_0)\exp(-iE_k(t-t_0)/\hbar) \,u_k(\vec{r}). \end{equation}

Exclude node summary : 

n

4727: Diamond Point, 4909: QM-HOME-I

0
 
X