$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$
$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$
$\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
$\newcommand{\Label}[1]{\label{#1}}$
$\newcommand{\Prime}{^{\prime}}$
Using the classical Hamiltonian and the correspondence rule \(\vec p \to -i\hbar \nabla\), the expression for the Hamiltonian operator for a charged particle is written giving the time dependent Schr\"{o}dinger equation. The Schrodinger equation retains its form under gauge transformations if the wave function is assumed to transform as
\[ \psi(\vec{r},t) \to \psi^\prime (\vec{r},t) =
e^{-i(q/c)\Lambda(\vec{r},t)}\psi(\vec{r},t). \]





||Message]