Category:
$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle} \newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}} \newcommand{\dd}[2][]{\frac{d#1}{d#2}} \newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}} newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
For conservative systems, we show how solution of time dependent Schrodinger equation can be found by separation of variables. Explicit expression for the wave function at arbitrary time \(t\) is obtained in terms of energy eigenfunctions and eigenvalues.
We assume that the Hamiltonian of the particle is independent of time and that it can be written in the form \begin{equation}\label{EQ01} H = \frac{p^2}{2m} + V(\vec{r}) \end{equation} The Schrodinger equation for the particle moving in potential $V(\vec{r})$ can be written as \begin{equation} -i \hbar\frac{\partial\psi(t)}{\partial t} = {1\over 2M} \nabla\,^2 \psi(t) + V(\vec{r}) \psi (t). \label{E24} \end{equation} The possible states of the particle at a time $t$ will be represented by square integrable wave function wave function $\psi(\vec{r},t)$. When time does not appear in the Hamiltonian of a system, the equation of motion can be solved by the method of separation of variables. Thus by substituting \begin{equation} \psi(\vec{r},t) = u(\vec{r}) T(t) \label{E25} \end{equation} in \eqref{E24} we get \begin{equation} i\hbar {1\over T(t)}\frac{d T(t)}{dt} = \hat{H} u(\vec{r}) \label{E26} \end{equation} Equating each side to a constant, say $E$ we get two equations for $u(\vec{r})$, and for $T(t)$, as follows. \begin{eqnarray} i \hbar \frac{d}{dt} T(t) & =& E T(t) \label{E27} \\ \hat{H} u(\vec{r}) & = & E u(\vec{r}) \label{E28} \end{eqnarray} Let $u_1(\vec{r}), u_2(\vec{r}), ...$ denote the eigenvectors of the Hamiltonian $\hat{H}$ with the eigenvalues $E_1,E_2, ... $, respectively. \begin{equation}\label{EQ301} \hat{H} u_k(\vec{r}) = E_k u_k(\vec{r}) ; \qquad k=1,2,3,... \end{equation} \eqref{E27} and \eqref{E28} have solutions given by \begin{equation} T_k(t) = \text{const} \times \exp(-iE_kt/\hbar), \qquad H u_k(\vec{r}) = E_ku_k(\vec{r}) \label{E29} \end{equation} and \eqref{E24} has {\it an infinite number of solutions}, one for each real \(k\), given by \begin{equation} \phi_k(\vec{r},t) = u_k(\vec{r},t) \exp(-iE_kt/\hbar) \label{E30} \end{equation} and the most general solution is a linear combination of solutions $\phi_k(\vec{r},t)$ in \eqref{E30} and is given by \begin{equation} \psi(\vec{r},t) = \sum_{k=1}^{\infty} c_k u_k(\vec{r}) \exp(-iE_kt)/\hbar) . \label{E31} \end{equation} If the wave function at time $t_0$, is $\psi(\vec{r},t_0)\equiv \psi_o(\vec{r})$, the expression \eqref{E31} evaluated at $t=t_0$ gives \begin{equation} \psi_0(\vec{r}) = \sum_{k=1}^{\infty} c_k u_k(\vec{r}) \exp(-iE_kt_0)/\hbar) \end{equation} Using the orthogonality of energy eigen functions we can find the coefficients $\alpha_k$ and are given by. \begin{equation} (u_k,\psi_0) = c_k \exp(-iE_kt_0)/\hbar) \end{equation} and the knowledge of the coefficients $c_k$ allows us to compute the wave function at time $t$ from \eqref{E31}. The final answer for the wave function at time $t$ is given by \begin{equation} \label{EQ12} \psi(\vec{r},t) = \sum_{k=1}^{\infty} c_k u_k(\vec{r}) \exp(-iE_kt)/\hbar)\psi(\vec{r},t) = \sum_{k=1}^{\infty} (u_k, \psi_0)\exp(-iE_k(t-t_0)/\hbar) \,u_k(\vec{r}) \end{equation} $\psi_0$ is the wave function of the system at time $t_0$.
Exclude node summary :
Exclude node links:
4727: Diamond Point, 4909: QM-HOME-I