Notices
 

Browse & Filter

For page specific messages
For page author info
Enter a comma separated list of user names.
2654 records found.
Operations
Selected 20 rows in this page.  
Title+Summary Name Datesort ascending

[QUE/QFT-15004] QFT-PROBLEM

Node id: 4067page

The original four fermion interaction for beta decay of neutron \[n \longrightarrow p + e^- + \bar{\nu} \] is of the of form \[ \bar{\psi}_p(x)\gamma_\mu\psi_n(x) \bar{\psi}_\nu(x) \gamma^\mu \psi_e(x) + h.c.\] Now consider other processes given below. Which of these processes (real or virtual) are permitted and which ones are not permitted by the above interaction in the first order?

  • \( \bar{p} \longrightarrow \bar{n} + e^- +\bar{\nu} \);
  • \( \bar{p} \longrightarrow \bar{n} + e^- +\nu \);
  • \( n \longrightarrow p + e^+ + \nu \);
  • \( p \longrightarrow n + e^+ + \bar{\nu} \);
  • \( \bar{n} \longrightarrow \bar{p} + e^+ + \nu \);
  • \( \bar{n} \longrightarrow \bar{p} + e^+ + \bar{\nu} \).

Give brief reason in each case.

shivahcu's picture 22-02-06 19:02:43 n

[QUE/QFT-15002] QFT-PROBLEM

Node id: 4065page

$\newcommand{\Hsc}{\mathscr H}$
The interaction of \(\Lambda^0\) hyperon, responsible for decay into a proton and a \(\pi^-\), is given by \[ \Hsc_\text{int} = \bar{\psi}_p(x) ( g - g^\prime\gamma_5)\psi_\Lambda(x) \phi_\pi ^\dagger + h.c. \] 

  • Give examples of three virtual processes allowed in the first order of this interaction term.}
  • Show that the partial decay rate of \(\Lambda^0 \longrightarrow p + \pi^-\) is given by \[ \Gamma = \frac{1}{4\pi}\frac{|\vec{p}|}{M_\Lambda}\left(|g|^2(E_p+M_p) + |g^\prime|^2 (E_p-M_p) \right)\]
shivahcu's picture 22-02-06 19:02:29 n

[QUE/QFT-15001] QFT-PROBLEM

Node id: 4064page

Prove that the probability per unit volume per unit time that the external potential \[ \vec{A}= (0,0,a\cos\omega t), A_0=0\] creates an electron-positron pair in the vacuum is given by \[ R = \frac{2}{3} \frac{e^2}{4\pi} \Big(\frac{|a|^2}{2} \Big) \omega^2 \Big( 1+ \frac{2m^2}{\omega^2}\Big) \sqrt{1- \frac{4m^2}{\omega^2}} \]

shivahcu's picture 22-02-06 19:02:29 n

[QUE/QFT-01005] QFT-PROBLEM

Node id: 4323page

The equation of motion of free Schrodinger field obey the equation \begin{equation} i\hbar \dd[\psi]{t} = -\frac{\hbar^2}{2m}\nabla^2 \psi . \end{equation} The Green function of this equation obeys the partial differential equation \begin{equation} i\hbar \dd{t}G(x,x{'}; t,t{'}) + \frac{\hbar^2}{2m}\nabla^2 G(x,x{'}; t,t{'})= \delta(x-x{'})\delta(t-t{'}) . \end{equation} Taking Fourier transform of the above equation, and using suitable contour in the complex plane show that the retarded Green function is given by \begin{equation} G(x,x{'}; t,t{'}) = \Big(\frac{m}{2\pi i \hbar (t-t{'})}\Big)^{1/2} \exp\left(\frac{im(x-x{'})^2}{2\hbar{(t-t{'})}}\right)\theta(t-t{'}). \end{equation}

shivahcu's picture 22-02-06 19:02:15 n

[QUE/QFT-01004] QFT-PROBLEM

Node id: 4322page

For second quantized Schrodinger field, show that the Galilean boost \[\int d^3 x\psi^\dagger (m~x+ it \hbar \nabla)\psi,\] is a conserved quantity. How do you interpret this conservation law?

shivahcu's picture 22-02-06 19:02:14 n

[QUE/QFT-01003] QFT-PROBLEM

Node id: 4321page

Compute inifinitesimal variations of the Lagrangian density for the Schrodimmger field under the Galiniean transformation \begin{equation} \vec{x} \Longrightarrow \vec{x}{'} = \vec{x} + \vec{v} t \end{equation} and \begin{equation} \psi(\vec{x}) \Longrightarrow \psi{'}(\vec{x}) = e^{-im\vec{v}\,^{{'}\,2} t/(2\hbar)} e^{im\vec{v}\cdot\vec{x}/\hbar} \psi(\vec{x}). \end{equation} Verfiy that the the change in Lagrangian is a total time derivative. Find the corresponding constant of motion.

shivahcu's picture 22-02-06 19:02:03 n

[QUE/QFT-01002] QFT-PROBLEM

Node id: 4320page

Compute infinitesimal variations of the Lagrangian density for the Schrodinger field under the Galilean transformation \begin{equation} \vec{x} \longrightarrow \vec{x}{'} = \vec{x} + \vec{v} t \end{equation} and \begin{equation} \psi(\vec{x}) \longrightarrow \psi{'}(\vec{x}{'}) = e^{-im\vec{v}\,^{\prime\,2} t/(2\hbar)} e^{im\vec{v}\cdot\vec{x}/\hbar} \psi(\vec{x}). \end{equation} Verify that the the change in Lagrangian is a total time derivative. Find the corresponding constant of motion.

shivahcu's picture 22-02-06 19:02:03 n

[QUE/QFT-01001] QFT-PROBLEM

Node id: 4002page

$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\ket}[1]{|#1\rangle}$
$\newcommand{\bra}[1]{\langle #1|}$
$\newcommand{\Lsc}{\mathscr L}$

Question

  • Write the Lagrangian for free Schrodinger field and obtain an expression for the Hamiltonian.
  • Using the Poisson bracket form of equations of motion show that the Galilean boost \[\vec{G}[\psi]=\int d^3 x\, \psi^\dagger (m\,\vec{x}+ it \hbar \nabla)\psi,\] is a conserved quantity. How do you interpret this conservation law?

Solution

 We use the notation \(x=(x_1,x_2,x_3)\).

  • The Lagrangian density is given by \[\Lsc = i\hbar\psi^\dagger (x,t) \dot{\psi}(x,t) - \frac{\hbar^2}{2m}|\nabla\psi(x)|^2 \] The momentum canonically conjugate to the field \(\psi(x,t)\) is \begin{equation*} \pi(x,t) = \pp[\Lsc]{\dot{\psi}}= i\hbar \dot{\psi}^\dagger \end{equation*} Therefore the Hamiltonian density is \begin{eqnarray}\nonumber H &=& \int d^3x \pi(x,t) \dot{\psi}(x,t) -\int d^3x \Lsc\\ &=& \frac{\hbar^2}{2m}\int d^3x |\nabla\psi(x,t)|^2. \\ &=& \frac{-i\hbar}{2m}\int d^3x (\nabla\pi)(\nabla\psi) \end{eqnarray}
  • The Galilean boost is given to be \begin{eqnarray} {G_k}[\psi,\pi] &=& \int d^3x \frac{1}{i\hbar} \pi(x,t)(m x_k +it\hbar\partial_k ) \psi(x,t) \end{eqnarray} Hence the time derivative of the boost \(G_k\) is given by \begin{eqnarray}\nonumber \dd[G_k]{t} &=& \int d^3x\, \pp[G_k]{t} +\big\{G_k, H\}_\text{PB}\\\label{EQ04} &=& =\big\{G_k,H\big\} + \int d^3x\, [\pi(x)\partial_k \psi(x)]. \end{eqnarray} We now compute the Poisson bracket \(\big\{G_k, H\}_\text{PB}\). \begin{eqnarray}\nonumber \big\{G_k, H\}_\text{PB} &=& -\frac{i\hbar}{2m}\int d^3x\, \big\{\nabla\pi(x,t), H\big\}_\text{PB}(mx_k +it\hbar\partial_k) (\partial_k\psi(x,t)) \\\label{EQ05} && -\frac{i\hbar}{2m}\int d^3x\, (\nabla\pi(x,t)) (mx_k +it\hbar\partial_k )\big\{\nabla\psi, H\big\}_\text{PB} \end{eqnarray} Now we use the Poisson brackets \begin{eqnarray}\nonumber \big\{\pi(x), H\big\}_\text{PB} &=& -\frac{i\hbar}{2m}\int d^3y\big\{\pi(x), (\nabla\pi)(\nabla \psi)\}_\text{PB}\\\nonumber & =& -\frac{i\hbar}{2m}\int d^3y (\nabla \pi(y))(-1)\nabla_y \delta^{(3)}(x-y)\\ &=& \frac{-i\hbar}{2m}\nabla^2 \pi(x)\\\nonumber \big\{\psi(x), H\big\}_\text{PB} &=&-\frac{i\hbar}{2m}\int d^3y\big\{\psi(x), (\nabla\pi)(\nabla \psi)\}_\text{PB} \\\nonumber &=& -\frac{i\hbar}{2m}\int d^3y \nabla_y\delta^{(3)}(x-y)(\nabla \psi(y)) \\ &=&\frac{i\hbar}{2m}\nabla^2 \psi(x) \end{eqnarray} Therefore the Poisson bracket \(\big\{G, H\big\}_\text{PB}\), \eqRef{EQ05}, is given by \begin{eqnarray}\nonumber \big\{G_k, H\big\}_\text{PB} &=& -\frac{1}{2m} \int d^3x\Big\{ (\nabla^2\pi)(mx_k+ it\hbar \partial_k) \psi + \big(mx_k +it\hbar\partial_k\big)\nabla^2\psi\Big\}\\\label{EQ12} &=& \frac{it\hbar}{2m}\int d^3x (\nabla^2\pi(x))(\partial_k\psi(x))-(\pi(x)) \nabla^2\partial_k\psi(x))\\\nonumber && \qquad - \frac{1}{2}\int d^3x \Big((\nabla^2\pi(x))(x_k \psi(x)) - (x_k \pi(x)) (\nabla^2\psi(x))\Big) \\ \label{EQ13} \end{eqnarray} Integrating by parts and, as we shall show below, discarding surface terms we get \begin{eqnarray}\label{EQ15} \big\{G_k, H\big\}_\text{PB} = - \int d^3x\, [\pi(x)\partial_k \psi(x)]. \end{eqnarray} Using \eqRef{EQ04} and \eqRef{EQ15} we get \(\dd[G]{t}=0.\) Therefore \(G\) is constant of motion.

Proof of \eqRef{EQ15
It is easy to see that the expression\eqRef{EQ12} is a total divergence. In fact \begin{eqnarray} \frac{it\hbar}{2m}\lefteqn{\int d^3x (\nabla^2\pi(x))(\partial_k\psi(x))-(\pi(x)) \nabla^2\partial_k\psi(x))}\\ &=&\frac{it\hbar}{2m} \int d^3x \nabla\Big((\nabla\pi(x))(\partial_k\psi)-(\pi(x))(\nabla\partial_k \psi(x))\Big) \end{eqnarray} which becomes surface term on using divergence theorem and hence is zero. % Therefore the Poisson bracket, \eqRef{EQ13}, becomes \begin{eqnarray} \big\{G,H\big\}_\text{PB}= - \frac{1}{2}\int d^3x \Big((\nabla^2\pi(x))(x_k \psi(x)) - (x_k \pi(x)) (\nabla^2\psi(x))\Big)\label{EQ17} \end{eqnarray} Next we use divergence theorem to integrate both the terms by parts and discard the surface term, we get \begin{eqnarray}\nonumber \lefteqn{ \int d^3 x (\nabla^2\pi(x))(x_k\psi(x))}\\\nonumber &=&- \int d^3x (\nabla\pi(x)) \nabla(x_k\psi(x))\\ &=&- \int d^3x (\nabla_k\pi(x)) \psi(x)) + (\nabla\pi(x))x_k(\nabla\psi(x))\label{EQ18} \end{eqnarray} and \begin{eqnarray}\nonumber \lefteqn{\int d^3 x (x_k\pi(x))(\nabla^2\psi(x))} \\\nonumber &=& -\int d^3x \nabla(x_k\pi(x))(\nabla\psi(x))\\ &=& -\int d^3x \pi(x) \nabla_k \psi(x) + (\nabla\pi(x)) x_k(\nabla\psi(x)) \label{EQ19} \end{eqnarray} Therefore from \eqRef{EQ17}, we get \begin{eqnarray}\nonumber \big\{G,H\big\} &=& \frac{1}{2}\int d^3x \big\{(\nabla_k\pi(x))(\psi(x)) - \pi(x) \nabla_k\psi(x)\big\}\\\label{EQ20} &=& \frac{1}{2}\int d^3x\nabla_k[\pi(x)\psi(x)] -\int d^3x [\pi(x) \nabla_k \psi(x)] \\ &=& -\int d^3x [\pi(x) \nabla_k \psi(x)] \end{eqnarray} where the last term in \eqRef{EQ20} becomes zero on integration by parts.

shivahcu's picture 22-02-06 19:02:59 n

[QUE/QFT-02002] QFT-PROBLEM

Node id: 4008page
[toc:0]

Compute inifinitesimal variations of the Lagrangian density for the Schrodimmger field under the Galiniean transformation \begin{equation} \vec{x} \Longrightarrow \vec{x}{'} = \vec{x} + \vec{v} t \end{equation} and \begin{equation} \psi(\vec{x}) \Longrightarrow \psi{'}(\vec{x}) = e^{-im\vec{v}\,^{{'}\,2} t/(2\hbar)} e^{im\vec{v}\cdot\vec{x}/\hbar} \psi(\vec{x}). \end{equation} Verfiy that the the change in Lagrangian is a total time derivative. Find the corresponding constant of motion.

shivahcu's picture 22-02-06 18:02:10 n

[QUE/QFT-02001] QFT-PROBLEM

Node id: 4007page

Compute infinitesimal variations of the Lagrangian density for the Schrodinger field under the Galilean transformation \begin{equation} \vec{x} \longrightarrow \vec{x}{'} = \vec{x} + \vec{v} t \end{equation} and \begin{equation} \psi(\vec{x}) \longrightarrow \psi{'}(\vec{x}\,{'}) = e^{-im\vec{v}\,^{{'}\,2} t/(2\hbar)} e^{im\vec{v}\cdot\vec{x}/\hbar} \psi(\vec{x}). \end{equation} Verify that the the change in Lagrangian is a total time derivative. Find the corresponding constant of motion.

shivahcu's picture 22-02-06 18:02:26 n

[QUE/QFT-03006] QFT-PROBLEM

Node id: 4014page

Question

The matrix for an infinitesimal Lorentz boost along direction \(\hat{n}\) transformation can be written as \begin{equation} \Lambda = I + \Delta v (\hat{n}\cdot \vec{Y}), \end{equation} where the matrices \(\vec{Y}\) are given by \begin{equation} Y_1=\begin{pmatrix} 0 &1 & 0 & 0\\1 & 0 & 0& 0\\0 & 0&0&0\\0&0&0& 0\\ \end{pmatrix}\qquad; Y_2=\begin{pmatrix} 0 &0 & 1 & 0\\0 & 0 & 0& 0\\1& 0&0&0\\0&0&0& 0\\ \end{pmatrix}\qquad; Y_3=\begin{pmatrix} 0 &0 & 0 &1 \\0 & 0 & 0&0 \\0 & 0&0&0\\1&0&0& 0\\ \end{pmatrix}. \end{equation} Work out the transformation matrix \(\Lambda\) for a finite boost by velocity \(v\) by taking it as \(N\) successive transformations and considering the limit \(N\to \infty\). Hence show that \begin{eqnarray} x^{{'}\,0} &=& \cosh \alpha x^0 +\sinh\alpha (\hat{n}\cdot\vec{x})\\ \vec{x}\,^{'} &=& [\vec{x}- (\hat{n}\cdot \vec{x})\hat{n}] + \hat{n} [\cosh \alpha (\hat{n}\cdot\vec{x}) +\sinh \alpha x^0] \end{eqnarray} where \(\tanh\alpha=v\).

Solution

We first compute powers of \(\hat{n}\cdot\vec{Y}\), where \(\hat{n}=(n_1,n_2,n_3)\) is a unit vector.
\begin{eqnarray} \hat{n}\cdot\vec{Y} &=& \begin{pmatrix} 0 & n_1 & n_2 & n_3 \\ n_1 & 0 & 0 & 0\\ n_2 & 0 & 0 & 0\\n_3 & 0 & 0 & 0 \end{pmatrix}\\ (\hat{n}\cdot\vec{Y})^2 &=& \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & n_1^2 & n_1 n_2 & n_1 n_3 \\ 0 & n_2 n_1 & n_2^2 & n_2 n_3 \\ 0 & n_3n_1 & n_3 n_2 & n_3 n_1 \end{pmatrix} (\hat{n}\cdot\vec{Y})^3 &=& \hat{n}\cdot\vec{Y} \end{eqnarray} Hence we get \begin{eqnarray} \exp\big(-\omega \hat{n}\cdot \vec{Y} \big) &=& 1- \omega (\hat{n}\cdot\vec{Y}) + \frac{\omega^2}{2!}(\hat{n}\cdot\vec{Y})^2 - \frac{\omega^3}{3!} (\hat{n}\cdot\vec{Y})^3 + \frac{\omega^4}{4!}(\hat{n}\cdot\vec{Y}) -\frac{\omega^5}{5!}(\hat{n}\cdot\vec{Y}) + \ldots. \end{eqnarray} Using \eqRef{EQ07} we get \begin{eqnarray}\nonumber \exp(-\omega \hat{n}\cdot \vec{Y}) &=& I- (\hat{n}\cdot\vec{Y}) \Big[ (\omega +\frac{\omega^3}{3!}+ \frac{\omega^5}{5!} +\ldots\Big] + (\hat{n}\cdot\vec{Y})^2 \Big[ \frac{\omega^2}{2!} + \frac{\omega^4}{4!} + \frac{\omega^6}{6!}+ \ldots \Big]\\ &=& I - (\hat{n}\cdot\vec{Y})\sinh \omega + (\hat{n}\cdot\vec{Y})^2\, (\cosh \omega-1) \end{eqnarray} Using \EqRef{EQ05} and \eqRef{EQ06} we get \begin{equation} \exp(-\omega \hat{n}\cdot\vec{Y}) = \begin{pmatrix} \cosh \omega &-n_1 \sinh \omega & -n_2\sinh\omega &-n_3\sinh \omega\\ -n_1 \sinh\omega &1+n_1^2(\cosh\omega-1) &n_1n_2(\cosh \omega -1) &n_1n_3(\cosh \omega -1) \\ -n_2 \sinh\omega &n_2n_1(\cosh \omega -1) &1+n_2^2(\cosh\omega-1) & n_2n_3(\cosh \omega -1)\\ -n_3 \sinh \omega& n_3n_1(\cosh \omega -1)& n_3n_2(\cosh \omega -1)& 1+ n_3^2(\cosh\omega-1) \end{pmatrix} \end{equation} Writing \begin{equation} \begin{pmatrix} x^{0\,{'}} \\x^{1\,{'}}\\x^{2\,{'}}\\x^{3\, {'}} \end{pmatrix} = \Lambda \begin{pmatrix} x^0 \\x^1\\x^2\\x^3 \end{pmatrix} \end{equation} Performing the matrix multiplication in the right hand side we get \begin{eqnarray}\label{EQ12} x^{{'}\,0} &=& \cosh \omega - \sinh \omega (\hat{n}\cdot\vec{x})\\ \vec{x}\,{'} &=& -\sinh \omega\, x^0 + (\cosh \omega -1) (\hat{n}\cdot\vec{x}) \hat{n} + \vec{x}.\label{EQ13} \end{eqnarray} Taking dot product of both sides in \eqRef{EQ13}, we get
\begin{eqnarray} x^{{'}\,0} &=& \cosh \omega x^0 - \sinh \omega (\hat{n}\cdot\vec{x})\\ (\hat{n}\cdot\vec{x}\,{'}) &=& -\sinh \omega\, x^0 + \cosh \omega (\hat{n}\cdot\vec{x}) \end{eqnarray}
Identifying \(\tanh \omega = (v/c)\), the above form give the standard Lorentz boost along the direction \(\hat{n}\).

shivahcu's picture 22-02-06 18:02:38 n

[QUE/QFT-03004] QFT-PROBLEM

Node id: 4012page

Define Pauli Lubanski operator \(W_\sigma\) by \[ W_\sigma = -\frac{1}{2} \epsilon_{\mu\nu\lambda\sigma} M^{\mu\nu} P^\sigma\] where \(P^\mu\) is energy momentum four vector and \(M^{\mu\nu}\) angular momentum tensor. Prove the following relations

  • \(W^\sigma P^\sigma =0\)
  • \(\big[W^\sigma , P^\mu\big] =0 \)
  • \(W_\sigma\) is a four vector, {\it i.e.} \(\big[M_{\mu\nu}, W_\sigma\big] = -i(W_\mu g_{\nu\sigma}-W_\nu g_{\mu\sigma})\)
  • \( \big[W_\lambda, W_\sigma \big] = i\epsilon_{\lambda\sigma\alpha\beta}W^\alpha P^\beta\)
  • \(P_\mu P^\mu\) and \(W^\sigma W_\sigma\) are Cashimir invariants of the Poincare group,  they commute with all the ten generators of the Poincare group.
  • Prove that \(W^2 = -\frac{1}{2} M_{\mu\nu} M^{\mu\nu} P^2 + M_{\mu\sigma}M^{\nu\sigma} P^\mu P_\sigma \)
shivahcu's picture 22-02-06 18:02:04 n

[QUE/QFT-03003] QFT-PROBLEM

Node id: 4011page

It is given that the generators \(M^{\mu\nu}\) of Lorentz group satisfy the commutation relations \begin{eqnarray}\nonumber [M^{\mu\nu} , P^\sigma] &=& i(g^{\sigma\mu} P^\nu - g^{\sigma\nu} P^\mu )\\\nonumber [M^{\mu\nu} , M ^{\rho\sigma}] &=& i(M^{\mu\rho} g^{ \nu\sigma} + M^{\nu\sigma} g^{\mu\rho} - M^{\nu\rho} g^{\mu\sigma} - M^{\mu\sigma} g^{\nu\rho} ) \end{eqnarray}

  • Compute the commutator \(\big[ \epsilon^{\mu\nu\lambda\sigma} M_{\mu\nu}M_{\lambda\sigma}, M_{\alpha\beta}\big].\)
  • Define \(K_i= M_{i0}\) and \(J_i=-\frac{1}{2}\epsilon_{imn}M^{mn}\) and prove the following commutation relations. \begin{eqnarray}\nonumber \Big[ J_i, P_k\Big]= -\epsilon_{ik\ell} P_ell, &\qquad& \big[J_i,P_0\big] =0 \\{}\nonumber \Big[ K_i, P_k\Big]= - P_0 g_{ik}, &\qquad& \big[K_i,P_0\big] =-iP_0 . \end{eqnarray}
  • The commutators of operators \(\vec{J}, \vec{K}\) are given by \begin{eqnarray}\nonumber \big[J_\ell,J_m\big] &=& i\epsilon_{\ell m n }J_n\\\nonumber \big[J_\ell,J_m\big] &=& i\epsilon_{\ell m n }K_n\\\nonumber \big[K_\ell,K_m\big] &=& -i\epsilon_{\ell m n }J_n. \end{eqnarray}
  • Show that \(\vec{j}^{\pm}\) defined by \(j^{(\pm)}_m = \frac{1}{2}\big(J_m\pm i K_m\big)\) obey angular momentum commutations relations \begin{eqnarray}\nonumber \big[j^{(\pm)}_\ell, j^{(\pm)}_m\big] &=& i \epsilon_{\ell m n }j^{(\pm)}_n\\\nonumber \big[j^{(+)}_\ell, j^{(-)}_m\big] &=&0. \end{eqnarray}
shivahcu's picture 22-02-06 18:02:32 n

[QUE/QFT-03002] QFT-PROBLEM

Node id: 4010page

Question

Write an infinitesimal Lorentz transformation as
\begin{equation} \widetilde{X{'}} = \widetilde{\Lambda} \widetilde{X} \end{equation} where \(\widetilde{\Lambda}\) is a four by four matrix. Taking \(Lambda\) to differ infinitesimal transformation of the form \[\Lambda = I + \Omega \] and find restrictions on the matrix \(\Omega\) using the fact that under Lorentz transformations \(x^\mu x_\mu \) remains invariant. Count independent number of parameters in \(\Omega\) and write its most general form. 

Solution

 The most general form of \(\Omega\) is \begin{equation*} \Omega = \begin{pmatrix} a & \alpha_1 & \alpha_2 & \alpha_3 \\ \alpha_1 & b & \alpha_4 & \alpha_5 \\ \alpha_2 & -\alpha_4 & c & \alpha_6\\ \alpha_3 & -\alpha_5 & -\alpha_6 & d \end{pmatrix} \end{equation*} }\end{Answer} \begin{Solution} The Lorentz invariance of \(x^\mu x_\mu= x^\mu g_{\mu\nu} x^\nu\) implies \[ \widetilde{X}^{{'} \,T} \tilde{g} \widetilde{X}{'} = {X}^{{'} \,T} \tilde{g} {X}{'}\] where \(\tilde{g}\) is the diagonal matrix with diagonal entries (1,-1,-1,-1). The requirement of Lorentz invariance of the four scalar product gives the following condition on \(\Lambda\). \begin{equation} \widetilde{\Lambda} \tilde{g} \widetilde{\Lambda} = \tilde{g} \end{equation} Using \(\widetilde{X}^{{'} \,T} g \widetilde{X}{'}\) We rewrite the above equation in the form \begin{equation} (I + \Omega^T) \tilde{g} (1+ \Omega) = \tilde{g} \end{equation} Simplifying and keeping only first order terms in \(\Omega\), gives \begin{equation}\label{EQ04} \Omega^T \tilde{g} + \tilde{g} \Omega = 0. \end{equation}
Writing and multiplying out the matrices gives
\begin{eqnarray} \Omega \tilde{g} &=& \begin{pmatrix} a & -\alpha_1 & -\alpha_2 & -\alpha_3 \\ \alpha_1 & b & \alpha_4 & \alpha_5 \\ \alpha_2 & -\alpha_4 & c & \alpha_6\\ \alpha_3 & -\alpha_5 & -\alpha_6 & d \end{pmatrix}\\ 
\tilde{g}\Omega &=& \begin{pmatrix} a & \alpha_1 & \alpha_2 & \alpha_3 \\ \alpha_1{'} & b & \alpha_4 & \alpha_5 \\ \alpha_2{'} & -\alpha_4{'} & c & \alpha_6\\ \alpha_3{'} & -\alpha_5{'} & -\alpha_6{'} & d \end{pmatrix} \end{eqnarray}

shivahcu's picture 22-02-06 18:02:56 n

[QUE/QFT-03001] QFT-PROBLEM

Node id: 4009page

Prove the following commutation relations for the infinitesimal generators of the Lorentz group \begin{eqnarray}\nonumber [P^\mu , P^\nu ] &=& 0\\\nonumber [M^{\mu\nu} , P^\sigma] &=& i(g^{\sigma\mu} P^\nu - g^{\sigma\nu} P^\mu )\\\nonumber [M^{\mu\nu} , M ^{\rho\sigma}] &=& i(M^{\mu\rho} g^{ \nu\sigma} + M^{\nu\sigma} g^{\mu\rho} - M^{\nu\rho} g^{\mu\sigma} - M^{\mu\sigma} g^{\nu\rho} ) \end{eqnarray} Our notation is the same as that of Gasiorowicz, {\it Elementary Particle Physics} John Wiley and Sons (1968)

shivahcu's picture 22-02-05 22:02:16 n

[QUE/QFT-04014] QFT-PROBLEM

Node id: 4027page



For the classical Schrodinger field\(\psi(x)\) calculate the following Poisson brackets.

  • \(\{N, \psi\}_\text{PB}\) 
  • \(\{ \psi, \Hca\}_\text{PB}\)
  • \(\{\Pca, \psi\}_\text{PB}\) 
  • \(\{\Pca, \Hca\}_\text{PB}\)

where \(N,\Pca\) and \(\Hca\), respectively, are the momentum and the Hamiltonian of the Schrodinger field. \begin{eqnarray}\nonumber N &=&\int \psi^*(x)\psi(x)\, dx; \qquad \Pca = -i\hbar\int\, dx \psi^*(x) \nabla \psi(x)\\\nonumber \Hca &=& \int \Big\{ \frac{\hbar^2}{2m}(\nabla\psi(x))^*(\nabla \psi(x)) + \psi^*(x)V(x)\psi(x)\Big\}. \end{eqnarray}

shivahcu's picture 22-02-05 22:02:41 n

[QUE/QFT-04013] QFT-PROBLEM

Node id: 4026page




Using the Heisenberg equation of motion for the Schrodinger field with Lagrangian density \[ \Lsc = i\hbar\psi^\dagger(\mathbf x,t)\pp[\psi(\mathbf x,t)]{t} - \frac{\hbar^2}{2m} (\nabla\psi^\dagger(\mathbf x))(\nabla\psi(\mathbf x)) - \psi^\dagger(\mathbf x,t)V(\mathbf x)\psi(\mathbf x,t) \] compute \(\dd[\rho]{t}\), where \(\rho=\psi^\dagger(\mathbf x)\psi(\mathbf x)\). Hence prove the equation of continuity \[\dd[\rho]{t} + \nabla\cdot \mathbf J =0\] where \(J\) is the probability current density \[\mathbf J = \frac{\hbar}{2im}[\psi^\dagger(\mathbf x)\big(\nabla\psi(\mathbf x)\big)- \big(\nabla\psi^\dagger(\mathbf x)\big)\psi(\mathbf x)].\] How does the interpretation of \(\rho\) and \(\mathbf J\) differ in the second quantized theory from that in Schrodinger quantum mechanics?

shivahcu's picture 22-02-05 09:02:09 n

[QUE/QFT-04012] QFT-PROBLEM

Node id: 4025page

$\newcommand{\Lsc}{\mathscr L}$

Consider electron proton scattering to be computed in the second quantized Schrodinger theory. The electrostatic interaction can be modeled as \[ V(\mathbf x_1-\mathbf x_2) = -(Ze^2)\int d\mathbf x_1\,d\mathbf x_2 \frac{\rho_e(\mathbf x_1) \rho_p(\mathbf x_2)}{|\mathbf x_1- \mathbf x_2|}\] This interaction suggests the following interaction term in the second quantized Schrodinger theory. \[ \Lsc_\text{int}=\int d\mathbf x_1d\mathbf x_2 \psi^*(\mathbf x_1)\psi(\mathbf x_1) V(\mathbf x_1-\mathbf x_2)\phi^*(\mathbf x_2)\phi(\mathbf x_2) \] where \(\psi ,\phi\) denote the electron and proton fields respectively, and \[V(\mathbf x_1-\mathbf x_2)=-\frac{(Ze^2)}{|\mathbf x_1- \mathbf x_2|}.\] Compute the electron proton scattering cross section in the center of mass frame. Use Yukawa potential \(V(\mathbf x_1-\mathbf x_2)=-V_0\dfrac{ e^{-\mu|\mathbf x_1-\mathbf x_2|}}{|\mathbf x_1- \mathbf x_2|}\) in \(\Lsc_\text{int}\). Show that in the limit \(\mu\to0\), the differential cross section coincides with the Rutherford scattering cross section.

shivahcu's picture 22-02-05 09:02:12 n

[QUE/QFT-04011 QFT-PROBLEM

Node id: 4024page

$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$

Expand \(\psi(x)\) in terms of plane waves as \[ \psi(\mathbf x) = \frac{1}{(2\pi)^{3/2}}\int d\mathbf k \exp(i\mathbf k\mathbf x) a(\mathbf k)\]

  1. Working in in one dimension, show that \[[a(\mathbf k), \psi^\dagger(\mathbf x)] = \frac{e^{-i\mathbf k\mathbf x}}{(2\pi)^{3/2}}\qquad \text{and} \qquad [a^\dagger(\mathbf k), \psi(\mathbf x)]= -\frac{e^{i\mathbf k\mathbf x}}{(2\pi)^{3/2}}\]
  2. Express the free Hamiltonian \begin{equation} H = \frac{\hbar^2}{2m}\int d\mathbf x (\nabla \psi^\dagger(\mathbf x) )(\nabla \psi(\mathbf x)) \end{equation} in terms of number operators and verify that \begin{equation} H = \int d\mathbf k \Big(\frac{\hbar^2\mathbf k^2}{2m}\Big) a(\mathbf k)^\dagger a(\mathbf k) \end{equation}
  3. Given interaction Hamiltonian \[H{'} = \int d\mathbf x \psi^\dagger(\mathbf x) V(\mathbf x) \psi(\mathbf x)\]. Compute the matrix element \(\matrixelement{\mathbf k_f}{H{'}}{\mathbf k_i}\) and verify that \[ \matrixelement{\mathbf k_f}{H{'}}{\mathbf k_i} = \frac{1}{(2\pi)^{3/2}} \int\,d\mathbf q \exp(i\mathbf q\mathbf x) V(\mathbf x) \] where \(\mathbf q=\mathbf k_f-\mathbf k_i\).
shivahcu's picture 22-02-05 09:02:13 n

[QUE/QFT-04010] QFT-PROBLEM

Node id: 4023page

Use the expansion of Schrodinger field \(\psi(x,t)\) in terms of plane waves \[\psi(\mathbf x,t) =\frac{1}{(2\pi)^{3/2}} \int d\mathbf k \exp(i\mathbf k.\mathbf x) a(\mathbf k,t)\] and the canonical commutation relations to prove that \[ [a(\mathbf k), a^\dagger(\mathbf k{'})] = \delta(\mathbf k-\mathbf k{'}).\]

shivahcu's picture 22-02-05 09:02:18 n

Pages

 
X