Notices
 

Browse & Filter

For page specific messages
For page author info
Enter a comma separated list of user names.
2651 records found.
Operations
Selected 20 rows in this page.  
Title+Summary Name Datesort ascending

[QUE/ME-02006] ME-PROBLEM

Node id: 3935page

Let \({\bf A, B,..}\) be objects with components written as \(\vec{A}=(A_1,A_2,A_3), \vec{B}=(B_1,B_2,B_3)\). Introduce \(\vec{A}{'}=(A_1{'},A_2{'},A_3{'}), \vec{B}{'}=(B_1{'},B_2{'},B_3{'})\) etc. by means of equation \begin{equation}\label{EQ01} \vec{A}{'} = \vec{A} -\sin \alpha (\hat{n}\times\vec{A}) + (1-\cos\alpha) \hat{n}\times (\hat{n}\times\vec{A}). \end{equation} and with similar equations for other vectors.

  • Using vector identities show that
    • \(\vec{A}{'}\cdot\vec{B}{'}=\vec{A}\cdot\vec{B}\);
    • If \(\vec{C}=\vec{A}\times\vec{B}\), then \(\vec{C}{'}\) is given by an equation similar to \eqRef{EQ01}.
  • How is the expression related \( \vec{A}{'}\cdot(\vec{B}{'}\times\vec{C}{'})\) related \( \vec{A}\cdot(\vec{B}\times\vec{C})\)?
shivahcu's picture 22-02-07 19:02:13 n

[QUE/ME-02005] ME-PROBLEM

Node id: 3934page

Question

 Using the definition of Levi-Civita and Kronecker delta symbols to prove the following identity \begin{eqnarray}\label{EQ01} \epsilon_{i\,j\,k}\,\epsilon_{l\,m\,n}\ &=&\ \begin{vmatrix} \delta_{il}&\delta_{im}&\delta_{in}\\ \delta_{jl}&\delta_{jm}&\delta_{jn}\\ \delta_{kl}&\delta_{km}&\delta_{kn} \end{vmatrix} \end{eqnarray} 

Solution

Interchanging \(i\leftrightarrow j\) in the right hand side amounts to interchange of the first and second rows and therefore the right hand side changes sign. Similar statement holds for exchange of \(i\leftrightarrow k\) and \(i\leftrightarrow k\). Thus the hand side is completely antisymmetric in indices \(i,j,k\). Repeating the above argument we see that the right hand side is totally antisymmetrc in indices \(\ell, m, n \) also. Thus the right hand side must be proportional to \(\epsilon_{i\,j\,k}\,\epsilon_{l\,m\,n}\). Thus \begin{equation} \text{R.H.S. of \eqRef{EQ01}} = K \epsilon_{i\,j\,k}\,\epsilon_{l\,m\,n}\label{EQ02} \end{equation} The constant of proportionality \(K\) is fixed by substituting \(i=1,j=2,k=3, \ell=1, m=2, n=3\) in \eqRef{EQ02}. The right hand side of \eqRef{EQ01} becomes determinant of unit matix and hence equal to 1. The right hand side of \eqRef{EQ02} becomes \(K \epsilon_{123}\epsilon_{123}=K\). This gives \(K=1\) and the proof of \eqRef{EQ01} is complete.

Me-que-02005

shivahcu's picture 22-02-07 19:02:39 n

[QUE/ME-02004] ME-PROBLEM

Node id: 3933page

Question 

Find the rotation matrix for a rotation by an angle \(\cos^{-1}(3/5)\) about axis \((2,1,2)\). } 

Answer

 The rotation matrix is given by \[ R= \begin{pmatrix} 7/9 & -(4/9)& 4/9 \\[2mm] 28/45 & 29/45 & -(4/9)\\[2mm] -(4/45)& 28/45 & 7/9\end{pmatrix}.\]  

 

shivahcu's picture 22-02-07 19:02:31 n

[QUE/ME-02002] ME-PROBLEM

Node id: 3931page

  The coordinates of a point under rotation change as \begin{equation} \label{EQ01} \begin{pmatrix} x_1{'}\\ x_2{'}\\ x_3{'}\end{pmatrix} = R \begin{pmatrix} x_1\\ x_2\\ x_3\end{pmatrix} \end{equation} Show that the property that lengths and angles do not change under a rotation implies that \(R\) must be an orthogonal matrix. Hence prove that \(\det R\) can have only value equal to \(\pm1\). What condition(s) on the transformation \eqRef{EQ01} will lead to the requirement that \(\det R\) must be equal to 1 and that \(\det R= -1\) will be ruled out?

 

 

shivahcu's picture 22-02-07 19:02:38 n

[QUE/ME-02001] ME-PROBLEM

Node id: 3930page


Show under an infinitesimal rotation of a vector \(\vec{A}\) about an axis \(\hat{n}\) has the form \(\Delta \vec{A}= c \hat{n}\times{\vec{A}}\), where \(c\) is an infinitesimal constant. }
\Hint{Use the fact that lengths and angles do not change under rotations} \QField{Comment}{ When ever you see an equation of the form \(\Delta \vec{A}= c \hat{n}\times{\vec{A}}\), you should realize that some rotation is taking place. Several examples can be given

  1. A electric dipole placed in an electric field will experience a torque and its equation of motion can be written down as\[ \dd[\vec{p}]{t}\propto \vec{p}\times \vec{E}\] and it will tend to rotate.
  2. A similar statement can be made about magnetic dipole in a magentic field.
  3. A related example is that of spin in a uniform magnetic field. The Hamitonian is of the form \(H=-\vec{\mu}\cdot\vec{B}\) and the equation of motion takes the form \[ i\hbar\dd[\vec{S}]{t} = [\vec{S},H]_- \] With magnetic moment being proportional to the spin \(\vec{S}\), the right hand side becomes proportional to \(\vec{B}\times \vec{S}\).
shivahcu's picture 22-02-07 19:02:06 n

Mechanics --- Notes for Lectures and Problems --- [ME-MIXED-LOT]

Node id: 5236collection
AK-47's picture 22-02-07 10:02:49 n

[QUE/QFT-11005] QFT-PROBLEM

Node id: 4052page





The Feynman propagator \(\Delta_F\) for a real scalar field is defined as the vacuum expectation value of time ordered product of fields: \[ \Delta_F(x-y) = \matrixelement{0}{T\big(\phi(x)\phi(y)\big)}{0}.\] We will now show that the Feynman propagator satisfies the equation \[ (\Box + M^2) \Delta_F(x-y)= - \delta^{(4)}(x-y).\] }Since \(\phi(x)\) obeys the Klein Gordon equation, it is obvious that \(\Delta^{(\pm)}(x-y)\) satisfy the Klein Gordon equation \begin{equation} (\Box + M^2)\Delta^{(\pm)}=0 . \end{equation} The time ordered product can be written as \begin{eqnarray} T(\phi(x)\phi(y)) &=&(\phi(x)\phi(y))\theta(x_0-y_0) + (\phi(y)\phi(x))\theta(y_0-x_0) \end{eqnarray} Now we compute action of the operator \(\displaystyle\Box =\frac{\partial^2}{x^{0\,2}}- \frac{\partial^2}{\partial x^{k\,2}}\) on the time ordered product. Note that the space derivatives in \(\displaystyle\Box = \PP{{x^0}}- \PP{{x^k}}\) will act only on the fields but the time derivative will act on theta functions also. So let us compute the time derivatives using \(\displaystyle\dd[\theta(x_0-y_0)]{x_0}= \delta(x_0-y_0)\). We will get \begin{eqnarray} { \pp{x_0}T(\phi(x)\phi(y))\nonumber }\nonumber &=&\Big\{\pp[\phi(x)]{x_0}\phi(y)\theta(x_0 - y_0) + (\phi(x)\phi(y))\pp{x_0}\theta(x_0 - y_0)\Big\} - \Big\{\phi(y)\pp[\phi(x)]{x_0}\theta(y_0 - x_0) - (\phi(y)\phi(x))\pp{x_0}\theta(y_0 - x_0)\Big\}\nonumber &=& \dot{\phi}(x)\,\phi(y)\theta(x_0 - y_0) - \phi(y)\,\dot{\phi}(x)\theta(y_0 - x_0) + \big[\phi(x), \phi(y)\big] \delta(x_0 - y_0)\\ &=& \big(\partial_0{\phi}(x)\big)\,\phi(y)\theta(x_0 - y_0) - \phi(y)\,\big(\partial_0{\phi}(x)\big)\theta(y_0 - x_0) \end{eqnarray} The last term in \eqRef{EQ19} becomes equal time commutator of the fields and hence it is zero. Differentiating \eqRef{EQ20} once again w.r.t. \(x_0\) we will get \begin{eqnarray}\nonumber { \frac{\partial^2}{\partial x^{02}}T(\phi(x)\phi(y)) }\nonumber &=& \ddot{\phi}(x)\,\phi(y)\theta(x_0 - y_0) - \phi(y)\,\ddot{\phi}(x)\theta(y_0 - x_0) +\nonumber \dot{\phi}(x)\,\phi(y)\delta(x_0 - y_0) - \phi(y)\,\dot{\phi}(x)\delta(y_0 - x_0)\\\nonumber &=& \ddot{\phi}(x)\,\phi(y)\theta(x_0 - y_0) - \phi(y)\,\ddot{\phi}(x)\theta(y_0 - x_0) \\\nonumber && \qquad + \big[\dot{\phi}(x)\,,\,\phi(y) \big] \delta(x_0-y_0) . \end{eqnarray} Substituting the value of equal time commutator \[\big[\dot{\phi}(x)\,,\,\phi(y)\big]\Big|_{x_0=y_0} = -\delta^{(3)}(\vec{x}-\vec{y}).\] we get\begin{eqnarray}\nonumber {\frac{\partial^2}{\partial x^{02}}\big\{T(\phi(x)\phi(y))\big\} }\ddot{\phi}(x)\,\phi(y)\theta(x_0 - y_0) - \phi(y)\,\ddot{\phi}(x)\theta(y_0 - x_0) - \delta^{(4)}(x-y). \end{eqnarray} Hence \begin{eqnarray}\nonumber {\big(\partial_0^2-\partial_k^2 + M^2\big)T(\phi(x)\phi(y))} &=& \big(\Box + M^2\big)\phi(x)\,\phi(y)\theta(x_0 - y_0)- \phi(y)\big(\Box + M^2\big)\phi(x)\theta(y_0- x_0) - \delta^{(4)}(x-y) - \delta^{(4)}(x-y) . \end{eqnarray} Remembering that the field satisfies Klein Gordon equation and taking vacuum expectation value, we get the desired answer \begin{equation} \big(\Box + M^2\big) \Delta_F(x) = - \delta^{(4)}(x-y) .\end{equation}

shivahcu's picture 22-02-06 20:02:35 n

[QUE/QFT-10003] QFT-PROBLEM

Node id: 4047page


For a real free Klein Gordon field, mass \(m\), compute \[ \matrixelement{0}{\phi(x)\phi(y)}{\vec{k}, \vec{q}}\] and show that the result is properly symmetrized wave function for two identical bosons with momenta \(\vec{q},\vec{p}\). Here \(\ket{\vec{k}, \vec{q}}\) is the state with two bosons with momenta \(\vec{k}, \vec{q}\)

shivahcu's picture 22-02-06 20:02:06 n

[QUE/QFT-15014] QFT-PROBLEM

Node id: 4078page

The matrix element for the decay process \(\pi \to \mu + \nu\) is given by
\[ m_{fi} =\frac{g}{\surd 2} \bar{u}^{(r)}(p) (\gamma_\mu iQ_\mu) (1-\gamma_5)v^{(s)}(k)\] for the life time computation we need to take absolute square, to average over initial spin and sum over final spin states. You may assume neutrino to be have a mass \(m_\nu\) and take limit 

shivahcu's picture 22-02-06 20:02:22 n

[QUE/QFT-15013] QFT-PROBLEM

Node id: 4077page

Show that the Rutherford scattering cross section for a second quantized Dirac particle in an external Coulomb field \((Ze^2/r)\) is given by \begin{equation} \frac{d\sigma}{d\Omega} = \frac{Z^2\alpha^2(1-v^2\sin^2(\theta/2))}{4|\vec{k}|^2 v^2 \sin^4(\theta/2)}. \end{equation} where \(\vec{k}\) is the momentum of the incident particle and \(\theta \) is the angle of scattering.

shivahcu's picture 22-02-06 20:02:19 n

[QUE/QFT-15012] QFT-PROBLEM

Node id: 4076page

$\newcommand{\Lsc}{\mathscr L}$

Question 

Consider a system of two real scalar fields \(\phi_1, \phi_2\) described by the Lagrangian density \begin{equation} \Lsc = \frac{1}{2} \partial_\mu \phi_i \partial^\mu \phi_i - \frac{1}{2} m^2 \phi_i\phi_i -\frac{1}{4} \lambda (\phi_i\phi_i)^2. \end{equation} Compute the scattering cross section to the lowest order in \(\lambda\). Find the cross sections for the three processes

  1. \(\phi_1 + \phi_2 \longrightarrow \phi_1 +\phi_2\)
  2. \(\phi_1 + \phi_1 \longrightarrow \phi_1 +\phi_1\)
  3. \(\phi_1 + \phi_1 \longrightarrow \phi_2 +\phi_2\)

Write your answers as a constant times \(\sigma_0\equiv \frac{\lambda^2}{64\pi s}\) where \(s\) is the total energy in the center of mass frame.

Solution

  • \(4\sigma_0\) &
  • \(36 \sigma_0\) &
  • \(4 \sigma_0\)
shivahcu's picture 22-02-06 20:02:59 n

[QUE/QFT-15011] QFT-PROBLEM

Node id: 4075page

Write the Lagrangian for a nonrelativistic particle moving in a potential \(V(r)\). Using the second quantized formalism compute the scattering cross section in the lowest order in the potential. Show that this result is same as the first Born approximation expression in nonrelativistic, first quantized formulation of quantum mechanics. Taking V(r) as Coulomb potential obtain the Rutherford formula

shivahcu's picture 22-02-06 20:02:32 n

[QUE/QFT-15010] QFT-PROBLEM

Node id: 4074page

$\newcommand{\Lsc}{\mathscr L}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
Assuming interactions of charged pions to be of the form \(\Lsc_\text{int}(x)= (g/4)(\pi(x)^+\pi(x)^-)^2\) find

  • the \(S\) matrix element for \(\pi-\pi\) scattering \[\pi^+ + \pi^- \longrightarrow \pi^+ + \pi^-\]
  • transition probability per unit time per unit volume for \(\pi - \pi\) scattering.
  • Compute the total cross section for the scattering process and show that \[ \dd[\sigma]{\Omega}= \frac{g^2}{64\pi^2 E_\text{cm}^2}\]
shivahcu's picture 22-02-06 19:02:51 n

[QUE/QFT-15009] QFT-PROBLEM

Node id: 4073page


Assuming interactions of charged pions to be of the form \(\Lsc_\text{int} (x)= (g/4)(\pi(x)^+\pi(x)^-)^2\) find the \(S\) matrix element for \(\pi-\pi\) scattering \[\pi^+ + \pi^- \longrightarrow \pi^+ + \pi^-\] transition probability per unit time per unit volume for \(\pi - \pi\) scattering. Compute the total cross section for the scattering process and show that \[ \frac{d\sigma}{d\Omega}= \frac{g^2}{64\pi^2 E_\text{cm}^2}\]

shivahcu's picture 22-02-06 19:02:45 n

[QUE/QFT-15008] QFT-PROBLEM

Node id: 4072page


Assuming \(\frac{g}{4!} \pi^4(x)\) interaction for neutral pions of mass \(m\), find

  • transition probability per unit time per unit volume for \(\pi - \pi\) scattering.
  • Compute the total cross section for the scattering process and show that \[ \dd[\sigma]{\Omega}= \frac{g^2}{64\pi^2 E_\text{cm}^2}\]
shivahcu's picture 22-02-06 19:02:15 n

[QUE/QFT-15007] QFT-PROBLEM

Node id: 4070page

Write Klein Gordon equation and the corresponding Lagrangian for a spin zero charged particle in presence an external electromagnetic field. Obtain the Hamiltonian. To the lowest order in \(e\), compute the scattering cross section for Coulomb scattering of a charged pion taking the vector potential to be that of a nucleus of charge density \(\rho(\vec{x})\). Write your answer for cross section in terms in of Fourier transform of \(\rho(\vec{x})\).

shivahcu's picture 22-02-06 19:02:53 n

[QUE/QFT-15006] QFT-PROBLEM

Node id: 4069page


Write Dirac equation in external electromagentic potential \(A_\mu(x)\). Assume the potentials for Coulomb interactions with a nucleus of charge \(Ze\) to be \[ \vec{A}=0, \quad A_0 = \frac{Ze}{4\pi |x|}. \] Show that the differential cross section for electron scattering from nucleus is given by \[\dd[\sigma]{\Omega}= \left(\dd[\sigma]{\Omega}\right)_\text{R} \Big(1-v^2\sin^2(\theta/2)\Big)\] where \[\left(\dd[\sigma]{\Omega}\right)_\text{R} = \frac{Ze^2}{64\pi m^2v^4 \sin^4(\theta/2)}\] is the Rutherford cross section for nonrelativistic Coulomb scattering

shivahcu's picture 22-02-06 19:02:22 n

[QUE/QFT-15005] QFT-PROBLEM

Node id: 4068page
    • The interaction Hamiltonian for pion decay \(\pi^-\longrightarrow e^- + \bar{\nu} \) can be written as \[\Hsc_\text{int} = \frac{g}{\sqrt{2}}\bar{\psi}_e(x)\gamma_\mu(1-\gamma_5)\psi(x)_\nu \partial^\mu \phi_\pi^-(x) + h.c. \] Show that the decay rate is given by \[\Gamma = \frac{g^2}{8\pi} \frac{m_e^2(m_\pi^2-m_e^2)^2}{m_\pi^3}.\]
    • Assuming that the coupling constant for \(\pi^-\longrightarrow \mu^- + \bar{\nu} \) is equal to that for the electron decay, calculate the branching ratio \[\frac{\Gamma(\pi^-\longrightarrow \mu^- +\bar{\nu})} {\Gamma((\pi^-\longrightarrow e^- + \bar{\nu})} \]
shivahcu's picture 22-02-06 19:02:35 n

[QUE/QFT-15004] QFT-PROBLEM

Node id: 4067page

The original four fermion interaction for beta decay of neutron \[n \longrightarrow p + e^- + \bar{\nu} \] is of the of form \[ \bar{\psi}_p(x)\gamma_\mu\psi_n(x) \bar{\psi}_\nu(x) \gamma^\mu \psi_e(x) + h.c.\] Now consider other processes given below. Which of these processes (real or virtual) are permitted and which ones are not permitted by the above interaction in the first order?

  • \( \bar{p} \longrightarrow \bar{n} + e^- +\bar{\nu} \);
  • \( \bar{p} \longrightarrow \bar{n} + e^- +\nu \);
  • \( n \longrightarrow p + e^+ + \nu \);
  • \( p \longrightarrow n + e^+ + \bar{\nu} \);
  • \( \bar{n} \longrightarrow \bar{p} + e^+ + \nu \);
  • \( \bar{n} \longrightarrow \bar{p} + e^+ + \bar{\nu} \).

Give brief reason in each case.

shivahcu's picture 22-02-06 19:02:43 n

[QUE/QFT-15002] QFT-PROBLEM

Node id: 4065page

$\newcommand{\Hsc}{\mathscr H}$
The interaction of \(\Lambda^0\) hyperon, responsible for decay into a proton and a \(\pi^-\), is given by \[ \Hsc_\text{int} = \bar{\psi}_p(x) ( g - g^\prime\gamma_5)\psi_\Lambda(x) \phi_\pi ^\dagger + h.c. \] 

  • Give examples of three virtual processes allowed in the first order of this interaction term.}
  • Show that the partial decay rate of \(\Lambda^0 \longrightarrow p + \pi^-\) is given by \[ \Gamma = \frac{1}{4\pi}\frac{|\vec{p}|}{M_\Lambda}\left(|g|^2(E_p+M_p) + |g^\prime|^2 (E_p-M_p) \right)\]
shivahcu's picture 22-02-06 19:02:29 n

Pages

 
X