$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\newcommand{\dd}[2][]{\frac{d#1}{d#2}}${}$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}${}$\newcommand{\ket}[1]{|#1\rangle}$ {} $\newcommand{\bra}[1]{\langle #1|}$
Using the expansion \[ \psi(x) = \sum a_n u_n(x) \] where \(\{u_n(x)\}\)is a set of orthonormal functions. Assume anti commutation relations for the creation and annihilation operators and
- prove that \[\matrixelement{0}{\psi(x)\psi(y)}{m,n} = \frac{1}{\sqrt{2}}[u_m(x)u_(y)- u_n(x)u_m(y)];\]
- show that \[\matrixelement{m}{\psi(x)\psi(y)}{n} = [u_m^*(x)u_n(y)- u_n(x)u_m^*(y)].\]
The answer in part(a) is just the two particle antisymmetric wave function.
Exclude node summary :
n
Exclude node links:
0
4920: QFT-HOME, 4727: Diamond Point
0