|
|
[QUE/ME-09002] ME-PROBLEMNode id: 3967page |
|
22-02-07 21:02:41 |
n |
|
|
[QUE/ME-09001] ME-PROBLEMNode id: 3966page |
|
22-02-07 21:02:25 |
n |
|
|
[QUE/ME-02019] ME-PROBLEMNode id: 3949pageShow that an rotation by an infinitesimal angle \(\Delta \theta\) about an axis \(hat{n}\) is equivalent to successive rotations by infinitesimal angles \(\alpha, \beta, \gamma\) about the three coordinate axes. Keeping first order terms in \(\Delta \theta\), find expressions for the angles \(\alpha, \beta, \gamma\) in terms of components of \(hat{n}\) and \(\Delta\theta\).
|
|
22-02-07 21:02:23 |
n |
|
|
[QUE/ME-02023] ME-PROBLEMNode id: 3953page$\newcommand{\Rbb}[]{\mathbb{R}}$
Find rotation matrix for a rotation by an angle \(\alpha\) about the axis \(1,2,1\) where \(\cos\alpha=\frac{3}{5}, \sin\alpha =\frac{4}{5}\).
The unit vector along the direction \((1,2,1)\) is given by \(\hat{n}=\frac{1}{\sqrt{6}}(1,2,1)\).\\ Under a rotation by an angle \(\alpha\) about axis \(\hat{n}=(n_1,n_2,n_3)\), the new components \(\vec{X}\) are related to old components \(\vec{x}\) by equation \begin{equation} \vec{X} = \vec{x} -\sin \alpha (\hat{n}\times\vec{x}) + (1-\cos\alpha)\hat{n}\times(\hat{n}\times\vec{x})) \end{equation} We compute \[\hat{n}\times\vec{x}=\big({n_2} {x_3}-{n_3} {x_2},{n_3} {x_1}-{n_1} {x_3},{n_1} {x_2}-{n_2} {x_1}\big)\] \begin{eqnarray} (\hat{n}\times(\hat{n}\times\vec{x}))_1&=&{n_2} ({n_1} {x_2}-{n_2} {x_1})-{n_3} ({n_3} {x_1}-{n_1} {x_3})\\ (\hat{n}\times(\hat{n}\times\vec{x}))_2&=&{n_3} ({n_2} {x_3}-{n_3} {x_2})-{n_1} ({n_1} {x_2}-{n_2} {x_1})\\ (\hat{n}\times(\hat{n}\times\vec{x}))_3&=& {n_1} ({n_3} {x_1}-{n_1} {x_3})-{n_2} ({n_2} {x_3}-{n_3} {x_2}) \end{eqnarray} Therefore \begin{eqnarray}\nonumber X_1&=&(1-\cos \alpha ) ({n_2} ({n_1} {x_2}-{n_2} {x_1})-{n_3} ({n_3} {x_1}-{n_1} {x_3}))-\sin \alpha ({n_2} {x_3}-{n_3} {x_2})+{x_1}\\\nonumber X_2&=&(1-\cos \alpha ) ({n_3} ({n_2} {x_3}-{n_3} {x_2})-{n_1} ({n_1} {x_2}-{n_2} {x_1}))-\sin \alpha ({n_3} {x_1}-{n_1} {x_3})+{x_2}\\\nonumber X_3&=& (1-\cos \alpha ) ({n_1} ({n_3} {x_1}-{n_1} {x_3})-{n_2} ({n_2} {x_3}-{n_3} {x_2}))-\sin \alpha ({n_1} {x_2}-{n_2} {x_1})+{x_3} \end{eqnarray} Therefore \begin{equation} \begin{pmatrix} X_1\\X_2\\X_3 \end{pmatrix} = \underline{\Rbb} \begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}. \end{equation} where the matrix \(\Rbb\) is given by \begin{eqnarray}\nonumber \begin{pmatrix} -(1-\cos\alpha)(n_2^2+n_3^2) + 1 & (1-\cos\alpha)n_1n_2 + \sin\alpha n_3 & (1-\cos\alpha)n_3n_1 - \sin\alpha n_2\\ (1-\cos\alpha)n_1 n_2 -n_3\sin\alpha & -(1-\cos\alpha)(n_3^2+n_1^2) +1 & (1-\cos\alpha)n_2n_3 + n_1\sin\alpha\\ (1-\cos \alpha)n_1n_3 + n_2 \sin\alpha & (1-\cos\alpha)n_2n_3 -n_1 \sin\alpha & -(1-\cos\alpha)(n_1^2+n_2^2) + 1 \end{pmatrix} \end{eqnarray} Substituting values \begin{equation*} \hat{n}=\frac{1}{\sqrt{6}}(1,2,1),\quad (1-\cos\alpha)=\frac{2}{5}, \quad\sin\alpha=\frac{4}{5} \end{equation*} and simplifying gives % \begin{equation} \left(\begin{array}{ccc} \frac{2}{3} & \frac{2}{15} \left(1+\sqrt{6}\right) & \frac{1}{15} \left(1-4 \sqrt{6}\right) \\[2mm] \frac{2}{15} \left(1-\sqrt{6}\right) & \frac{13}{15} & \frac{2}{15} \left(1+\sqrt{6}\right) \\[2mm] \frac{1}{15} \left(1+4 \sqrt{6}\right) & \frac{2}{15} \left(1-\sqrt{6}\right) & \frac{2}{3} \end{array} \right) \end{equation}
|
|
22-02-07 21:02:41 |
n |
|
|
[QUE/ME-02022] ME-PROBLEMNode id: 3952pageI Question Let \(S_{ij}\), \(A_{ij}\) and be symmetric, ansymmetric tensors respectively. Then for arbitrary tensor \(T_{ij}\), {\bf prove any one} of the following identities. \[(a)\ \ S_{ij}T_{ij}=\frac{1}{2}S_{ij}\big(T_{ij}+T_{ji}\big); \quad \quad (b)\ \ A_{ij}T_{ij}=\frac{1}{2}A_{ij}\big(T_{ij}-T_{ji}\big).\] % \FigBelow{10,-25}{40}{0}{}{}\\[3mm]
II Solution
Consider the right hand side of the identity (a) to be proved and write all terms in the sum. There will be four terms as \(i\) and \(j\) take values 1 and 2. This gives \begin{eqnarray} \frac{1}{2}S_{ij}\big(T_{ij}+T_{ji}\big) &=&\frac{1}{2}\sum_{i=1}^2\sum_{j=1}^2S_{ij}\big(T_{ij}+T_{ji}\big)\\ &=& \frac{1}{2}\sum_{i=1}^2\Big( S_{i1}\big(T_{i1}+T_{1i}\big)+ S_{i2}\big(T_{i2}+T_{2i}\big)\Big)\\ &=&\frac{1}{2} \Big( S_{11}\big(T_{11}+T_{11}\big)+ S_{12}\big(T_{12}+T_{21}\big)\Big)\\ && +\frac{1}{2} \Big( S_{21}\big(T_{21}+T_{12}\big)+ S_{22}\big(T_{22}+T_{22}\big)\Big)\\ &=& S_{11}T_{11} +S_{12}T_{12} + S_{21}T_{21}+ S_{22}T_{22}\\ &=& \sum_{i=1}^2 \sum_{j=1}^2 S_{ij}T_{ij} = S_{ij}T_{ij} \end{eqnarray} Note:- This approach will not be useful for more complicated expressions.
\begin{eqnarray} S_{ij}T_{ij} &=& S_{ji}T_{ij} \qquad \HighLight{Used symmetry property of S} \\ &=&S_{nm}T_{mn} \qquad \HighLight{renamed dummy indices}\\ &=& S_{ij}T_{ji} \qquad \HighLight{renamed dummy indices again} \label{EQ02} \end{eqnarray} Therefore the right hand side of (a) becomes \begin{eqnarray} \frac{1}{2}S_{ij}\big(T_{ij}+T_{ji}\big) &=&\frac{1}{2}S_{ij}T_{ij} +\frac{1}{2} S_{ij}T_{ji} \qquad \text{\HighLight{Now use \eqRef{EQ02} in second term}}\nonumber\\ &=& \frac{1}{2}S_{ij}T_{ij} +\frac{1}{2} S_{ij}T_{ij} = S_{ij}T_{ij}. \end{eqnarray}
\begin{eqnarray}\nonumber S_{ij}T_{ij} &=& S_{ji}T_{ji} \qquad \HighLight{Change Dummy indices}\\\nonumber S_{ij}T_{ij} &=& S_{ji}T_{ji} \qquad \HighLight{Use symmetry of S}\\ \text{add} \qquad S_{ij}T_{ij} &=& \frac{1}{2}S_{ij}\big(T_{ij}+T_{ji}\big)\nonumber \end{eqnarray}
|
|
22-02-07 21:02:27 |
n |
|
|
[QUE/ME-02021] ME-PROBLEMNode id: 3951page
A rotation takes a vector by an angle \(\alpha\) about axis (2,1,2) takes vector \(\underline{\sf A}\) to new vector \(\underline{\sf A}{'}\). Taking \(\alpha =\cos^{-1}\Big(\frac{3}{5}\Big), 0 < \alpha < \pi/2 \), find the rotation matrix \(R\), such that \(\underline{\sf B}=R \underline{\sf A}\) that relates two vectors.
|
|
22-02-07 21:02:17 |
n |
|
|
[QUE/ME-02020] ME-PROBLEMNode id: 3950pageShow that the trace of rotation matrix for rotation by an angle \(\phi\)is given by \((1+\cos2\phi)\).
|
|
22-02-07 19:02:38 |
n |
|
|
[QUE/ME-02018] ME-PROBLEMNode id: 3948pageA particle of mass m moves on the inner surface of a cone of revolution, whose semi-vertical angle is \(\alpha\), under the action of arepulsive force \({m\mu/r^3}\) from the axis; the angular momentum of the particle about the axis being \(m\surd \mu \tan \alpha\); prove that its path is an arc of a hyperbola whose eccentricity is \(\sec \alpha\). . [Math. Tripos, 1897.]
|
|
22-02-07 19:02:57 |
n |
|
|
[QUE/ME-02017] ME-PROBLEMNode id: 3947page
You are given two unit vectors \(\vec{m}=(1,1,1)\) and \(\vec{n}=(1,0,1)\). What should be the unit vector \(\hat{\ell}\) along an axis what should be the angle of rotation \(\alpha\) that will rotate vector \(\vec{n}\) and align it along the vector \(\vec{m}\).
\(\cos\alpha=\frac{\vec{m}\cdot\vec{n}}{|\vec{m}||\vec{n}|}=\frac{1}{\sqrt{3}} \)
Angle \(\alpha\) is given by \(\cos\alpha=\dfrac{\vec{m}\cdot\vec{n}}{|\vec{m}||\vec{n}|}=\dfrac{1}{\sqrt{3}} \);Clockwise rotation by \(\alpha \) about axis along \(\hat{\ell}=\dfrac{\vec{m}\times\vec{n}}{|\vec{m}||\vec{n}|}= \frac{1}{\sqrt{2}}(1,0,-1)\);
|
|
22-02-07 19:02:35 |
n |
|
|
[QUE/ME-02016] ME-PROBLEMNode id: 3946page
You are given two unit vectors \(\hat{\ell}\) and \(\hat{n}\) and angles \(\alpha,\gamma\). Find the axis \(\hat{m}\) and angle of rotation \(\beta\) such that a rotation \(R_{\hat{\ell}}(\alpha)\) followed by \(R_{\hat{m}}(\beta)\) and then by \(R_{\hat{n}}(\gamma)\) amounts to no rotation of an arbitrary vector.
Angle \(\cos\alpha=\hat{m}\cdot\hat{n}\) Clockwise rotation by \(\alpha \) about axis along \(\hat{\ell}=\hat{m}\times\hat{n}\);
|
|
22-02-07 19:02:36 |
n |
|
|
[QUE/ME-02015] ME-PROBLEMNode id: 3945pageShow that \begin{equation*} [\vec{A},\vec{B},\vec{C}]^2 = \begin{vmatrix} \vec{A}.\vec{A} & \vec{A}.\vec{B} & \vec{A}.\vec{C} \\ \vec{B}.\vec{A} & \vec{B}.\vec{B} & \vec{B}.\vec{C} \\ \vec{C}.\vec{A} & \vec{C}.\vec{B} & \vec{C}.\vec{C} \end{vmatrix} \end{equation*} where \([\vec{A},\vec{B},\vec{C}]=\vec{A} . (\vec{B} \times \vec{C} ). \)
|
|
22-02-07 19:02:16 |
n |
|
|
[QUE/ME-02014] ME-PROBLEMNode id: 3944page
- Given a rotation matrix what property will you use to find the axis of rotation and the angle of rotation.
- Verify that the matrix \begin{equation} R = \frac{1}{3}\begin{pmatrix} 2 & 2 & -1\\ -1& 2 & 2 \\2 & -1 & 2 \end{pmatrix} \end{equation} represents a proper rotation.
- Find the axis and angle of rotation corresponding to the rotation matrix in (b).
|
|
22-02-07 19:02:25 |
n |
|
|
[QUE/ME-02013] ME-PROBLEMNode id: 3943pageWrite \(3\times 3\) rotation matrix corresponding to a rotation about axis \(\hat{n}\) by an angle \(\theta\).\hfill \GetQSource using the result \begin{equation}\label{EQ14} \vec{x}{'} = (\vec{x}\cdot\hat{n})\hat{n} - (\hat{n}\times\vec{x})\sin\theta - \hat{n}\times(\hat{n}\times\vec{x})\cos\theta. \end{equation} on the rotations by angle \(theta\) about axis \(hat{n}\) and
|
|
22-02-07 19:02:04 |
n |
|
|
[QUE/ME-02012] ME-PROBLEMNode id: 3942pageShow that at least one eigenvalue of every rotation matrix is real. What are the ways in which all the three eigenvalues can be real? If the matrix has complex eigenvalues, show that they must come in complex conjugate pairs
|
|
22-02-07 19:02:54 |
n |
|
|
[QUE/ME-02011] ME-PROBLEMNode id: 3941pageUsing definition of Levi-Civita symbol, prove the following identities. \begin{eqnarray} \epsilon_{i\,j\,k}\,\epsilon_{i\,j\,k} \ &=&\ 6 \\ \epsilon_{i\,j\,k}\,\epsilon_{l\,j\,k} \ &=&\ 2\,\delta_{il} \\ \epsilon_{i\,j\,k}\,\epsilon_{l\,m\,k}\ &=&\ (\,\delta_{il}\,\delta_{jm}\,-\,\delta_{im}\,\delta_{jl}) \\ \epsilon_{i\,j\,k}\,\epsilon_{l\,m\,n}\ &=&\ \left(\begin{array}{ccc} \delta_{il}&\delta_{im}&\delta_{in}\\ \delta_{jl}&\delta_{jm}&\delta_{jn}\\ \delta_{kl}&\delta_{km}&\delta_{kn} \end{array} \right) \end{eqnarray} Use result on \(\vec{A}\times(\vec{B}\times{\vec{C})}\) to derive identity (3) of Q[1].
|
|
22-02-07 19:02:18 |
n |
|
|
[QUE/ME-02010] ME-PROBLEMNode id: 3940pageUsing definition of Levi-Civita epsilon symbol and Kronecker delta symbol to show that \begin{equation}\epsilon_{i\,j\,k}\,\epsilon_{k\,l\,m}\ =\ (\,\delta_{il}\,\delta_{jm}\,-\,\delta_{im}\,\delta_{jl}) \end{equation} Use this identity to prove that \begin{equation}\vec{A}\times(\vec{B}\times\vec{C})=(\vec{A}\cdot\vec{C})\vec{B} -(\vec { A } \cdot\vec{B})\vec{C}.\end{equation}
|
|
22-02-07 19:02:21 |
n |
|
|
[QUE/ME-02009] ME-PROBLEMNode id: 3939page Read the following theorem of Rodrigues and Hamilton taken from Whittaker. The theorem of Rodrigues and Hamilton. Any two successive rotations about a fixed point can be compounded intoa single rotation by means of a theorem, which may be stated as follows:Successive rotations about three concurrent lines fixed in space, through twicethe angles of the planes formed by them, restore a body to its original position. For let the lines be denoted by OP, OQ, OR. Draw. Op, Oq, Orperpendicular to the planes QOR, ROP, POQ respectively. Then if a body isrotated through two right angles about Oq, and afterwards through two rightangles about Or, the position of OP is on the whole unaffected, while Oq ismoved to the position occupied by its image in the line Or; the effect is therefore the same as that of a rotation round OP through twice the anglebetween the planes PR and PQ, which we may call the angle RPQ. It follows that successive rotations round OP, OQ, OR through twice the angles RPQ, PQR, QRP, respectively, are equivalent to successive rotations through two right angles about the lines Oq, Or, Or, Op, Op, Oq; but the latter rotations will clearly on the whole produce no displacement; which establishes the theorem.
Now solve the following problem. Following two rotations are preformed in succession (i) rotation by angle \(\alpha\) about axis \(\hat{n}\); (ii) rotation by angle \(\beta\) about axis \(\hat{m}\). Find the angle and axis of rotation that will produce the same result as the combined effect of above two rotations.
|
|
22-02-07 19:02:55 |
n |
|
|
[QUE/ME-02008] ME-PROBLEMNode id: 3938pageFor a four vector \(x=(\vec{x},x_4)\equiv(x_1,x_2,x_3,x_4)\), define a \(2\times2\) matrix \(M\) by \[M = x_\mu\sigma_\mu= x_4 + \vec{x}\cdot\vec{\sigma}\] where \(\sigma_4\) is \(2\times2\) identity matrix and \(\vec{\sigma}\) are Pauli matrices given by \begin{equation*} \sigma_1=\begin{pmatrix}0&1\\1&0\end{pmatrix},\quad \sigma_1=\begin{pmatrix}0&-i\\i&0\end{pmatrix},\quad \sigma_1=\begin{pmatrix}1&0\\0&-1\end{pmatrix} \end{equation*} Also define a matrix \(U\) by \begin{equation*} U = \cos\frac{\alpha}{2} + i\sin\frac{\alpha}{2}(\hat{n}\cdot\vec{\sigma}) \end{equation*} where \(\hat{n}=(n_1,n_2,n_3)\) is a unit vector.
- Show that \(U\) is unitary and \(\det U=1\).
- Prove that \(x_\mu = \frac{1}{2} Tr(\sigma_\mu M)\)
- Let \(M{'}= U M U^\dagger\) Compute \(x_\mu{'} \) and show that \begin{equation} x_4{'}=x_4; \vec{x}{'}=\vec{x}-\sin\alpha(\hat{n}\times\vec{x}) +(1-\cos\alpha)\hat{n}\times(\hat{n} \times\vec{x}) \end{equation}
The last equation shows that to every rotation in three dimensions there are two \(SU(2)\) matrices given by \(\pm U\).
|
|
22-02-07 19:02:14 |
n |
|
|
[QUE/ME-02007] ME-PROBLEMNode id: 3936pageLet \({\bf A, B,..}\) be objects with components written as \(\vec{A}=(A_1,A_2,A_3), \vec{B}=(B_1,B_2,B_3)\). Introduce \(\vec{A}{'}=(A_1{'},A_2{'},A_3{'}), \vec{B}{'}=(B_1{'},B_2{'},B_3{'})\) etc. by means of equation \begin{equation}\label{EQ01} \begin{pmatrix}A_1{'}\\A_2{'}\\A_3{'}\end{pmatrix} = R \begin{pmatrix}A_1\\A_2\\A_3\end{pmatrix} \end{equation} and with similar equations for other vectors.\\ Using the fact that the matrix \(R\) is orthodgonal matrix show that
- \({A}_i{'}\vec{B}_i{'}=A_i B_i\);
- If \(C_i{'}=\epsilon_{ijk}A_j{'} B_k{'}\), then \(\vec{C}{'}\) is given by an equation similar to \eqRef{EQ01}, where, of course, \(C_i=\epsilon_{ijk}A_j B_k\)
- The value of \( \vec{A}{'}\cdot(\vec{B}{'}\times\vec{C}{'})\) is independent of the matrix \(R\), if \(\det R=1\). What happens if \(\det R=-1\)?
|
|
22-02-07 19:02:40 |
n |
|
|
[QUE/ME-02006] ME-PROBLEMNode id: 3935pageLet \({\bf A, B,..}\) be objects with components written as \(\vec{A}=(A_1,A_2,A_3), \vec{B}=(B_1,B_2,B_3)\). Introduce \(\vec{A}{'}=(A_1{'},A_2{'},A_3{'}), \vec{B}{'}=(B_1{'},B_2{'},B_3{'})\) etc. by means of equation \begin{equation}\label{EQ01} \vec{A}{'} = \vec{A} -\sin \alpha (\hat{n}\times\vec{A}) + (1-\cos\alpha) \hat{n}\times (\hat{n}\times\vec{A}). \end{equation} and with similar equations for other vectors.
- Using vector identities show that
- \(\vec{A}{'}\cdot\vec{B}{'}=\vec{A}\cdot\vec{B}\);
- If \(\vec{C}=\vec{A}\times\vec{B}\), then \(\vec{C}{'}\) is given by an equation similar to \eqRef{EQ01}.
- How is the expression related \( \vec{A}{'}\cdot(\vec{B}{'}\times\vec{C}{'})\) related \( \vec{A}\cdot(\vec{B}\times\vec{C})\)?
|
|
22-02-07 19:02:13 |
n |