Notices
 

Browse & Filter

For page specific messages
For page author info
Enter a comma separated list of user names.
2644 records found.
Operations
Selected 20 rows in this page.  
Title+Summary Name Datesort ascending

[QUE/ME-09002] ME-PROBLEM

Node id: 3967page
shivahcu's picture 22-02-07 21:02:41 n

[QUE/ME-09001] ME-PROBLEM

Node id: 3966page
shivahcu's picture 22-02-07 21:02:25 n

[QUE/ME-02019] ME-PROBLEM

Node id: 3949page

Show that an rotation by an infinitesimal angle \(\Delta \theta\) about an axis \(hat{n}\) is equivalent to successive rotations by infinitesimal angles \(\alpha, \beta, \gamma\) about the three coordinate axes. Keeping first order terms in \(\Delta \theta\), find expressions for the angles \(\alpha, \beta, \gamma\) in terms of components of \(hat{n}\) and \(\Delta\theta\).

shivahcu's picture 22-02-07 21:02:23 n

[QUE/ME-02023] ME-PROBLEM

Node id: 3953page


Question

Find rotation matrix for a rotation by an angle \(\alpha\) about the axis \(1,2,1\) where \(\cos\alpha=\frac{3}{5}, \sin\alpha =\frac{4}{5}\).

Solution

The unit vector along the direction \((1,2,1)\) is given by \(\hat{n}=\frac{1}{\sqrt{6}}(1,2,1)\).\\ Under a rotation by an angle \(\alpha\) about axis \(\hat{n}=(n_1,n_2,n_3)\), the new components \(\vec{X}\) are related to old components \(\vec{x}\) by equation \begin{equation} \vec{X} = \vec{x} -\sin \alpha (\hat{n}\times\vec{x}) + (1-\cos\alpha)\hat{n}\times(\hat{n}\times\vec{x})) \end{equation} We compute \[\hat{n}\times\vec{x}=\big({n_2} {x_3}-{n_3} {x_2},{n_3} {x_1}-{n_1} {x_3},{n_1} {x_2}-{n_2} {x_1}\big)\] \begin{eqnarray} (\hat{n}\times(\hat{n}\times\vec{x}))_1&=&{n_2} ({n_1} {x_2}-{n_2} {x_1})-{n_3} ({n_3} {x_1}-{n_1} {x_3})\\ (\hat{n}\times(\hat{n}\times\vec{x}))_2&=&{n_3} ({n_2} {x_3}-{n_3} {x_2})-{n_1} ({n_1} {x_2}-{n_2} {x_1})\\ (\hat{n}\times(\hat{n}\times\vec{x}))_3&=& {n_1} ({n_3} {x_1}-{n_1} {x_3})-{n_2} ({n_2} {x_3}-{n_3} {x_2}) \end{eqnarray} Therefore \begin{eqnarray}\nonumber X_1&=&(1-\cos \alpha ) ({n_2} ({n_1} {x_2}-{n_2} {x_1})-{n_3} ({n_3} {x_1}-{n_1} {x_3}))-\sin \alpha ({n_2} {x_3}-{n_3} {x_2})+{x_1}\\\nonumber X_2&=&(1-\cos \alpha ) ({n_3} ({n_2} {x_3}-{n_3} {x_2})-{n_1} ({n_1} {x_2}-{n_2} {x_1}))-\sin \alpha ({n_3} {x_1}-{n_1} {x_3})+{x_2}\\\nonumber X_3&=& (1-\cos \alpha ) ({n_1} ({n_3} {x_1}-{n_1} {x_3})-{n_2} ({n_2} {x_3}-{n_3} {x_2}))-\sin \alpha ({n_1} {x_2}-{n_2} {x_1})+{x_3} \end{eqnarray} Therefore \begin{equation} \begin{pmatrix} X_1\\X_2\\X_3 \end{pmatrix} = \underline{\Rbb} \begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}. \end{equation} where the matrix \(\Rbb\) is given by \begin{eqnarray}\nonumber \begin{pmatrix} -(1-\cos\alpha)(n_2^2+n_3^2) + 1 & (1-\cos\alpha)n_1n_2 + \sin\alpha n_3 & (1-\cos\alpha)n_3n_1 - \sin\alpha n_2\\ (1-\cos\alpha)n_1 n_2 -n_3\sin\alpha & -(1-\cos\alpha)(n_3^2+n_1^2) +1 & (1-\cos\alpha)n_2n_3 + n_1\sin\alpha\\ (1-\cos \alpha)n_1n_3 + n_2 \sin\alpha & (1-\cos\alpha)n_2n_3 -n_1 \sin\alpha & -(1-\cos\alpha)(n_1^2+n_2^2) + 1 \end{pmatrix} \end{eqnarray} Substituting values \begin{equation*} \hat{n}=\frac{1}{\sqrt{6}}(1,2,1),\quad (1-\cos\alpha)=\frac{2}{5}, \quad\sin\alpha=\frac{4}{5} \end{equation*} and simplifying gives % \begin{equation} \left(\begin{array}{ccc} \frac{2}{3} & \frac{2}{15} \left(1+\sqrt{6}\right) & \frac{1}{15} \left(1-4 \sqrt{6}\right) \\[2mm] \frac{2}{15} \left(1-\sqrt{6}\right) & \frac{13}{15} & \frac{2}{15} \left(1+\sqrt{6}\right) \\[2mm] \frac{1}{15} \left(1+4 \sqrt{6}\right) & \frac{2}{15} \left(1-\sqrt{6}\right) & \frac{2}{3} \end{array} \right) \end{equation}

 

shivahcu's picture 22-02-07 21:02:41 n

[QUE/ME-02022] ME-PROBLEM

Node id: 3952page

I Question 
Let \(S_{ij}\), \(A_{ij}\) and be symmetric, ansymmetric tensors respectively. Then for arbitrary tensor \(T_{ij}\), {\bf prove any one} of the following identities. \[(a)\ \ S_{ij}T_{ij}=\frac{1}{2}S_{ij}\big(T_{ij}+T_{ji}\big); \quad \quad (b)\ \ A_{ij}T_{ij}=\frac{1}{2}A_{ij}\big(T_{ij}-T_{ji}\big).\]
% \FigBelow{10,-25}{40}{0}{}{}\\[3mm]


II Solution 



Solution1

Consider the right hand side of the identity (a) to be proved and write all terms in the sum. There will be four terms as \(i\) and \(j\) take values 1 and 2. This gives \begin{eqnarray} \frac{1}{2}S_{ij}\big(T_{ij}+T_{ji}\big) &=&\frac{1}{2}\sum_{i=1}^2\sum_{j=1}^2S_{ij}\big(T_{ij}+T_{ji}\big)\\ &=& \frac{1}{2}\sum_{i=1}^2\Big( S_{i1}\big(T_{i1}+T_{1i}\big)+ S_{i2}\big(T_{i2}+T_{2i}\big)\Big)\\ &=&\frac{1}{2} \Big( S_{11}\big(T_{11}+T_{11}\big)+ S_{12}\big(T_{12}+T_{21}\big)\Big)\\ && +\frac{1}{2} \Big( S_{21}\big(T_{21}+T_{12}\big)+ S_{22}\big(T_{22}+T_{22}\big)\Big)\\ &=& S_{11}T_{11} +S_{12}T_{12} + S_{21}T_{21}+ S_{22}T_{22}\\ &=& \sum_{i=1}^2 \sum_{j=1}^2 S_{ij}T_{ij} = S_{ij}T_{ij} \end{eqnarray} Note:- This approach will not be useful for more complicated expressions.

Solution2

\begin{eqnarray} S_{ij}T_{ij} &=& S_{ji}T_{ij} \qquad \HighLight{Used symmetry property of S} \\ &=&S_{nm}T_{mn} \qquad \HighLight{renamed dummy indices}\\ &=& S_{ij}T_{ji} \qquad \HighLight{renamed dummy indices again} \label{EQ02} \end{eqnarray} Therefore the right hand side of (a) becomes \begin{eqnarray} \frac{1}{2}S_{ij}\big(T_{ij}+T_{ji}\big) &=&\frac{1}{2}S_{ij}T_{ij} +\frac{1}{2} S_{ij}T_{ji} \qquad \text{\HighLight{Now use \eqRef{EQ02} in second term}}\nonumber\\ &=& \frac{1}{2}S_{ij}T_{ij} +\frac{1}{2} S_{ij}T_{ij} = S_{ij}T_{ij}. \end{eqnarray}

Cutest Solution : 

\begin{eqnarray}\nonumber S_{ij}T_{ij} &=& S_{ji}T_{ji} \qquad \HighLight{Change Dummy indices}\\\nonumber S_{ij}T_{ij} &=& S_{ji}T_{ji} \qquad \HighLight{Use symmetry of S}\\ \text{add} \qquad S_{ij}T_{ij} &=& \frac{1}{2}S_{ij}\big(T_{ij}+T_{ji}\big)\nonumber \end{eqnarray}

shivahcu's picture 22-02-07 21:02:27 n

[QUE/ME-02021] ME-PROBLEM

Node id: 3951page

Question

A rotation takes a vector by an angle \(\alpha\) about axis (2,1,2) takes vector \(\underline{\sf A}\) to new vector \(\underline{\sf A}{'}\). Taking \(\alpha =\cos^{-1}\Big(\frac{3}{5}\Big), 0 < \alpha < \pi/2 \), find the rotation matrix \(R\), such that \(\underline{\sf B}=R \underline{\sf A}\) that relates two vectors.

Solution

shivahcu's picture 22-02-07 21:02:17 n

[QUE/ME-02020] ME-PROBLEM

Node id: 3950page

Show that the trace of rotation matrix for rotation by an angle \(\phi\)is given by \((1+\cos2\phi)\).

shivahcu's picture 22-02-07 19:02:38 n

[QUE/ME-02018] ME-PROBLEM

Node id: 3948page

A particle of mass m moves on the inner surface of a cone of revolution, whose semi-vertical angle is \(\alpha\), under the action of arepulsive force \({m\mu/r^3}\) from the axis; the angular momentum of the particle about the axis being \(m\surd \mu \tan \alpha\); prove that its path is an arc of a hyperbola whose eccentricity is \(\sec \alpha\). . [Math. Tripos, 1897.]

shivahcu's picture 22-02-07 19:02:57 n

[QUE/ME-02017] ME-PROBLEM

Node id: 3947page

Question 

 You are given two unit vectors \(\vec{m}=(1,1,1)\) and \(\vec{n}=(1,0,1)\). What should be the unit vector \(\hat{\ell}\) along an axis what should be the angle of rotation \(\alpha\) that will rotate vector \(\vec{n}\) and align it along the vector \(\vec{m}\).

Answer

\(\cos\alpha=\frac{\vec{m}\cdot\vec{n}}{|\vec{m}||\vec{n}|}=\frac{1}{\sqrt{3}} \)

Solution

Angle \(\alpha\) is given by \(\cos\alpha=\dfrac{\vec{m}\cdot\vec{n}}{|\vec{m}||\vec{n}|}=\dfrac{1}{\sqrt{3}} \);Clockwise rotation by \(\alpha \) about  axis along \(\hat{\ell}=\dfrac{\vec{m}\times\vec{n}}{|\vec{m}||\vec{n}|}= \frac{1}{\sqrt{2}}(1,0,-1)\);

shivahcu's picture 22-02-07 19:02:35 n

[QUE/ME-02016] ME-PROBLEM

Node id: 3946page

Question 

You are given two unit vectors \(\hat{\ell}\) and \(\hat{n}\) and angles \(\alpha,\gamma\). Find the axis \(\hat{m}\) and angle of rotation \(\beta\) such that a rotation \(R_{\hat{\ell}}(\alpha)\) followed by \(R_{\hat{m}}(\beta)\) and then by \(R_{\hat{n}}(\gamma)\) amounts to no rotation of an arbitrary vector.

Answer

Angle \(\cos\alpha=\hat{m}\cdot\hat{n}\) Clockwise rotation by \(\alpha \) about axis along \(\hat{\ell}=\hat{m}\times\hat{n}\);

shivahcu's picture 22-02-07 19:02:36 n

[QUE/ME-02015] ME-PROBLEM

Node id: 3945page

Show that \begin{equation*} [\vec{A},\vec{B},\vec{C}]^2 = \begin{vmatrix} \vec{A}.\vec{A} & \vec{A}.\vec{B} & \vec{A}.\vec{C} \\ \vec{B}.\vec{A} & \vec{B}.\vec{B} & \vec{B}.\vec{C} \\ \vec{C}.\vec{A} & \vec{C}.\vec{B} & \vec{C}.\vec{C} \end{vmatrix} \end{equation*} where \([\vec{A},\vec{B},\vec{C}]=\vec{A} . (\vec{B} \times \vec{C} ). \)

shivahcu's picture 22-02-07 19:02:16 n

[QUE/ME-02014] ME-PROBLEM

Node id: 3944page
  • Given a rotation matrix what property will you use to find the axis of rotation and the angle of rotation.
  • Verify that the matrix \begin{equation} R = \frac{1}{3}\begin{pmatrix} 2 & 2 & -1\\ -1& 2 & 2 \\2 & -1 & 2 \end{pmatrix} \end{equation} represents a proper rotation.
  • Find the axis and angle of rotation corresponding to the rotation matrix in (b).
shivahcu's picture 22-02-07 19:02:25 n

[QUE/ME-02013] ME-PROBLEM

Node id: 3943page

Write \(3\times 3\) rotation matrix corresponding to a rotation about axis \(\hat{n}\) by an angle \(\theta\).\hfill \GetQSource using the result \begin{equation}\label{EQ14} \vec{x}{'} = (\vec{x}\cdot\hat{n})\hat{n} - (\hat{n}\times\vec{x})\sin\theta - \hat{n}\times(\hat{n}\times\vec{x})\cos\theta. \end{equation} on the rotations by angle \(theta\) about axis \(hat{n}\) and

shivahcu's picture 22-02-07 19:02:04 n

[QUE/ME-02012] ME-PROBLEM

Node id: 3942page

Show that at least one eigenvalue of every rotation matrix is real. What are the ways in which all the three eigenvalues can be real? If the matrix has complex eigenvalues, show that they must come in complex conjugate pairs

shivahcu's picture 22-02-07 19:02:54 n

[QUE/ME-02011] ME-PROBLEM

Node id: 3941page

Using definition of Levi-Civita symbol, prove the following identities. \begin{eqnarray} \epsilon_{i\,j\,k}\,\epsilon_{i\,j\,k} \ &=&\ 6 \\ \epsilon_{i\,j\,k}\,\epsilon_{l\,j\,k} \ &=&\ 2\,\delta_{il} \\ \epsilon_{i\,j\,k}\,\epsilon_{l\,m\,k}\ &=&\ (\,\delta_{il}\,\delta_{jm}\,-\,\delta_{im}\,\delta_{jl}) \\ \epsilon_{i\,j\,k}\,\epsilon_{l\,m\,n}\ &=&\ \left(\begin{array}{ccc} \delta_{il}&\delta_{im}&\delta_{in}\\ \delta_{jl}&\delta_{jm}&\delta_{jn}\\ \delta_{kl}&\delta_{km}&\delta_{kn} \end{array} \right) \end{eqnarray} Use result on \(\vec{A}\times(\vec{B}\times{\vec{C})}\) to derive identity (3) of Q[1].

shivahcu's picture 22-02-07 19:02:18 n

[QUE/ME-02010] ME-PROBLEM

Node id: 3940page

Using definition of Levi-Civita epsilon symbol and Kronecker delta symbol to show that \begin{equation}\epsilon_{i\,j\,k}\,\epsilon_{k\,l\,m}\ =\ (\,\delta_{il}\,\delta_{jm}\,-\,\delta_{im}\,\delta_{jl}) \end{equation} Use this identity to prove that \begin{equation}\vec{A}\times(\vec{B}\times\vec{C})=(\vec{A}\cdot\vec{C})\vec{B} -(\vec { A } \cdot\vec{B})\vec{C}.\end{equation}

shivahcu's picture 22-02-07 19:02:21 n

[QUE/ME-02009] ME-PROBLEM

Node id: 3939page


Read the following theorem of Rodrigues and Hamilton
taken from Whittaker.
The theorem of Rodrigues and Hamilton.
Any two successive rotations about a fixed point can be compounded intoa single
rotation by means of a theorem, which may be stated as follows:Successive
rotations about three concurrent lines fixed in space, through twicethe angles
of the planes formed by them, restore a body to its original position. For let
the lines be denoted by OP, OQ, OR. Draw. Op, Oq, Orperpendicular to the planes
QOR, ROP, POQ respectively. Then if a body isrotated through two right angles
about Oq, and afterwards through two rightangles about Or, the position of OP is
on the whole unaffected, while Oq ismoved to the position occupied by its image
in the line Or; the effect is therefore the same as that of a rotation round OP
through twice the anglebetween the planes PR and PQ, which we may call the angle
RPQ. It follows that successive rotations round OP, OQ, OR through twice the
angles RPQ, PQR, QRP, respectively, are equivalent to successive rotations
through two right angles about the lines Oq, Or, Or, Op, Op, Oq; but the
latter rotations will clearly on the whole produce no displacement; which
establishes the theorem. 


Now solve the following problem. Following two rotations are preformed in
succession
(i) rotation by angle \(\alpha\) about axis \(\hat{n}\);
(ii) rotation by angle \(\beta\) about axis \(\hat{m}\).
Find the angle and axis of rotation that will produce the same result as the
combined effect of above two rotations.

shivahcu's picture 22-02-07 19:02:55 n

[QUE/ME-02008] ME-PROBLEM

Node id: 3938page

For a four vector \(x=(\vec{x},x_4)\equiv(x_1,x_2,x_3,x_4)\), define a \(2\times2\) matrix \(M\) by \[M = x_\mu\sigma_\mu= x_4 + \vec{x}\cdot\vec{\sigma}\] where \(\sigma_4\) is \(2\times2\) identity matrix and \(\vec{\sigma}\) are Pauli matrices given by \begin{equation*} \sigma_1=\begin{pmatrix}0&1\\1&0\end{pmatrix},\quad \sigma_1=\begin{pmatrix}0&-i\\i&0\end{pmatrix},\quad \sigma_1=\begin{pmatrix}1&0\\0&-1\end{pmatrix} \end{equation*} Also define a matrix \(U\) by \begin{equation*} U = \cos\frac{\alpha}{2} + i\sin\frac{\alpha}{2}(\hat{n}\cdot\vec{\sigma}) \end{equation*} where \(\hat{n}=(n_1,n_2,n_3)\) is a unit vector.

  • Show that \(U\) is unitary and \(\det U=1\).
  • Prove that \(x_\mu = \frac{1}{2} Tr(\sigma_\mu M)\)
  • Let \(M{'}= U M U^\dagger\) Compute \(x_\mu{'} \) and show that \begin{equation} x_4{'}=x_4; \vec{x}{'}=\vec{x}-\sin\alpha(\hat{n}\times\vec{x}) +(1-\cos\alpha)\hat{n}\times(\hat{n} \times\vec{x}) \end{equation}

The last equation shows that to every rotation in three dimensions there are two \(SU(2)\) matrices given by \(\pm U\).

shivahcu's picture 22-02-07 19:02:14 n

[QUE/ME-02007] ME-PROBLEM

Node id: 3936page

Let \({\bf A, B,..}\) be objects with components written as \(\vec{A}=(A_1,A_2,A_3), \vec{B}=(B_1,B_2,B_3)\). Introduce \(\vec{A}{'}=(A_1{'},A_2{'},A_3{'}), \vec{B}{'}=(B_1{'},B_2{'},B_3{'})\) etc. by means of equation \begin{equation}\label{EQ01} \begin{pmatrix}A_1{'}\\A_2{'}\\A_3{'}\end{pmatrix} = R \begin{pmatrix}A_1\\A_2\\A_3\end{pmatrix} \end{equation} and with similar equations for other vectors.\\ Using the fact that the matrix \(R\) is orthodgonal matrix show that

  • \({A}_i{'}\vec{B}_i{'}=A_i B_i\);
  • If \(C_i{'}=\epsilon_{ijk}A_j{'} B_k{'}\), then \(\vec{C}{'}\) is given by an equation similar to \eqRef{EQ01}, where, of course, \(C_i=\epsilon_{ijk}A_j B_k\)
  • The value of \( \vec{A}{'}\cdot(\vec{B}{'}\times\vec{C}{'})\) is independent of the matrix \(R\), if \(\det R=1\). What happens if \(\det R=-1\)?
shivahcu's picture 22-02-07 19:02:40 n

[QUE/ME-02006] ME-PROBLEM

Node id: 3935page

Let \({\bf A, B,..}\) be objects with components written as \(\vec{A}=(A_1,A_2,A_3), \vec{B}=(B_1,B_2,B_3)\). Introduce \(\vec{A}{'}=(A_1{'},A_2{'},A_3{'}), \vec{B}{'}=(B_1{'},B_2{'},B_3{'})\) etc. by means of equation \begin{equation}\label{EQ01} \vec{A}{'} = \vec{A} -\sin \alpha (\hat{n}\times\vec{A}) + (1-\cos\alpha) \hat{n}\times (\hat{n}\times\vec{A}). \end{equation} and with similar equations for other vectors.

  • Using vector identities show that
    • \(\vec{A}{'}\cdot\vec{B}{'}=\vec{A}\cdot\vec{B}\);
    • If \(\vec{C}=\vec{A}\times\vec{B}\), then \(\vec{C}{'}\) is given by an equation similar to \eqRef{EQ01}.
  • How is the expression related \( \vec{A}{'}\cdot(\vec{B}{'}\times\vec{C}{'})\) related \( \vec{A}\cdot(\vec{B}\times\vec{C})\)?
shivahcu's picture 22-02-07 19:02:13 n

Pages

 
X