Notices
 

Browse & Filter

For page specific messages
For page author info
Enter a comma separated list of user names.
2654 records found.
Operations
Selected 20 rows in this page.  
Title+Summary Name Datesort ascending

[QUE/QFT-04009] QFT-PROBLEM

Node id: 4340page



Using the expansion \[ \psi(x) = \sum a_n u_n(x) \] where \(\{u_n(x)\}\)is a set of orthonormal functions. Assume anti commutation relations for the creation and annihilation operators and

  • prove that \[\matrixelement{0}{\psi(x)\psi(y)}{m,n} = \frac{1}{\sqrt{2}}[u_m(x)u_(y)- u_n(x)u_m(y)];\]
  • show that \[\matrixelement{m}{\psi(x)\psi(y)}{n} = [u_m^*(x)u_n(y)- u_n(x)u_m^*(y)].\]

The answer in part(a) is just the two particle antisymmetric wave function.

shivahcu's picture 22-02-05 09:02:13 n

[QUE/QFT-04007] QFT-PROBLEM

Node id: 4021page
  • The Lagrangian density for the Schrodinger equation is given to be \[\Lsc = i\hbar\psi^*(x,t)\pp[\psi(x,t)]{t} - \frac{\hbar^2}{2m} |\nabla \psi|^2 - \psi^*(x,t)V(x)\psi(x,t)\] Verify that the Euler Lagrange equations for the Schrodinger field coincide with the Schrodinger equation.
  • Find the Hamiltonian of the system. Use Poisson brackets to obtain the Hamiltonian equations of motion.
  • Verify that the Hamilton's equations imply the Euler Lagrange equation of motion.
shivahcu's picture 22-02-05 09:02:08 n

[QUE/QFT-04006] QFT-PROBLEM

Node id: 4020page

Find Heisenberg equations of motion for the operators \(a(k,t)\) and \(a^\dagger(k,t)\)

shivahcu's picture 22-02-05 09:02:07 n

[QUE/QFT-04005] QFT-PROBLEM

Node id: 4019page

Taking the case of free Schrodinger field answer the following questions.

  • Find Heisenberg equations of motion for the operators \(a(k,t)\) and \(a^\dagger(k,t)\)
  • Solve the equations of motion and expre
  • \(a(k,t)\) and \(a^\dagger(k,t)\) as functions of time. Calculate the unequal time commutators \[\big[a(k,t), a(k{'}, t{'})\big],\quad \big[a^\dagger(k,t), a^\dagger(k{'}, t{'})\big],\quad \big[a(k,t), a^\dagger(k{'}, t{'})\big].\]
  • Use your answers and work out the unequal time commutator \[\big[\psi(x,t),\psi^\dagger(x{'},t{'})\big].\]
  • Use your result for unequal time commutator and express \(\psi(x_1,t_1) \psi^\dagger(x_2,t_2)\) in a normal ordered form.
shivahcu's picture 22-02-04 22:02:34 n

[QUE/QFT-04004] QFT-PROBLEM

Node id: 4018page

Compute the commutators \( [\psi(x), H]; [\pi(x), H]\) and verify that the Heisenberg equations of motion coincide with the Schrodinger equation.

shivahcu's picture 22-02-04 21:02:07 n

[QUE/QFT-04003] QFT-PROBLEM

Node id: 4017page

Define \(a(k,t)\) and \(a^\dagger(k,t)\) as Fourier coefficients of free field \(\psi(x,t)\). \[ \psi(x,t)= \frac{1}{(2\pi)^3}\int dx e^{ikx} a(k);\psi^\dagger(x,t)= \frac{1}{(2\pi)^3}\int dx e^{-ikx} a^\dagger(k); \]

  • Use ETCR to show that \[ [(a(k,t), a^\dagger(k{'},t)]= \delta(k-k{'}).\] What are the values of equal time commutators \([a(k,t), a(k{'},t) ], [a^\dagger(k,t), a^\dagger(k{'},t) ].\)
shivahcu's picture 22-02-04 21:02:31 n

[QUE/QFT-04002] QFT-PROBLEM

Node id: 4016page

Compute unequal time commutator \[ \big[\psi(x,t), \psi(y,t{'})\big]\] where the Schrodinger field \(\psi(x,t)\) obey free particle Schrodinger equation.

shivahcu's picture 22-02-04 21:02:52 n

[QUE/QFT-04001] QFT-PROBLEM

Node id: 4015page

Consider free Schrodinger equation as a quantized field.

  • Show that \begin{equation} G(x -x{'}, t -t{'} ) = \matrixelement{0}{T ψ\psi(x, t)\psi^\dagger (x{'}, t{'}))}{0} \end{equation} obeys the equation for Green function of the free particle Schrodinger equation.
  • Use expansion of the field operators in terms of free particle wave function \(N \exp(ikx - iE_k t)\), where \(E_k = \frac{\hbar^2k^2}{2m}\). Obtain an explicit expression for this time ordered product as a function of \(x, t, x{'} , t{'}\).
  • Have you seen this object before? Where?
shivahcu's picture 22-02-04 21:02:58 n

[QUE/QFT-06012] QFT-PROBLEM

Node id: 4372page

Let \(\displaystyle N=-\Big(\frac{i\beta\vec{\alpha}\cdot\vec{p} }{2mc}\Big)\, f\Big(\frac{|\vec{p}|}{mc}\Big)\)

  • Prove that \begin{equation} \exp(iN) = \cos\big(\frac{|\vec{p}|f}{2mc} \big) + \frac{\beta\vec{\alpha}\cdot\vec{p}}{|\vec{p}|} \sin \big(\frac{|\vec{p}|f}{2mc} \big), \end{equation} where \(H\) is Dirac Hamiltonian \(H=c\vec{\alpha}.\cdot\vec{p} + \beta mc^2\)
  • Find the real function \(f\) such that \begin{equation} H{'} = e^{iN} H e^{-iN} \end{equation} is free of operators odd operators. For this choice of \(f\) \[ H{'} = \beta c \sqrt{|\vec{p}|^2 + m^2c^2}.\]
shivahcu's picture 22-02-04 21:02:54 n

[QUE/QFT-06011] QFT-PROBLEM

Node id: 4371page

Write the transformation properties of free Dirac field of under a Lorentz boost by velocity \(vec{v}=v(0,0,1)\). Show that the Dirac wave function for a particle with momentum \(\vec{p}=p(0,0,1)\) and mass \(m\) can be obtained by applying an appropriate boost on wave function for a particle at rest. Demonstrate this only for positive energy solution with spin along \(z\)-axis

shivahcu's picture 22-02-04 21:02:35 n

[QUE/QFT-06010] QFT-PROBLEM

Node id: 4370page

Verify that free Dirac Lagrangian is invariant under phase transformation \begin{equation*} \psi(x) \longrightarrow \psi{'}(x) = e^{i\alpha}\psi(x). \end{equation*} Find the corresponding conserved quantity \(Q\). For \(\tt classical Dirac field \), express it in terms of \(a^{(r)}(p),a^{(r)\dagger}(p), b^{(r)}(p)\) and \(b^{(r)\dagger}(p)\), and show that \begin{equation} Q = \sum_{r=1}^2 \int \Big(\frac{M}{E_p}\Big) d^3p \big\{a^{(r)}(p)a^{(r)\dagger}(p) + b^{(r)\dagger}(b^{(r)}(p) \big\} \end{equation} Notation is same as Gasiorowicz, {\it Elementary Particle Physics}, John Wiley and Sons, New York (1966).

shivahcu's picture 22-02-04 09:02:02 n

[QUE/QFT-06009] QFT-PROBLEM

Node id: 4369page

Let \(n^\mu\) be a spacelike four vector satisfying \(n^\mu n_\mu=-1\), show that

  • the eigenvalues of \(\gamma_5n\!\!\!/ \) are \(\pm1\).
  • \((\gamma_5 n\!\!\!/)^2 =1\)
  • If \(p^\mu n_\mu=0\), \(p\!\!\!/\) commutes with \(\gamma_5 n\!\!\!/ \)
  • Free particle solutions \(u(p)\) and \(v(p)\) of Dirac equation \[ (p\!\!\!/ -M )u(p)=0, \qquad (p\!\!\!/  + M)v(p)=0\] can also be taken to be eigenvectors of \(\gamma_5 n\!\!\!/   \)  
shivahcu's picture 22-02-04 09:02:19 n

[QUE/QFT-06008 QFT-PROBLEM

Node id: 4368page

Consider an electron in a uniform and constant magentic field \(\vec{B}\) along the \(z-\)axis. Obtain the most general four component positive energy eigennfunctions. Show that the energy eigenvalues are given by \[ E= \sqrt{m^2c^4 + c^2p_3^2 + 2ne\hbar c|\vec{B}|}\] with \(n=0,1,2,...\). List all the constants of motion.

shivahcu's picture 22-02-04 09:02:18 n

[QUE/QFT-06004] QFT-PROBLEM

Node id: 4364page

Does there exist an invertible matrix \(S\) such that \[ S \gamma_\mu S^{-1} = \gamma_\mu'\] where \[\gamma_1'= \gamma_2\gamma_3, \quad \gamma_2'=\gamma_3\gamma_1, \quad \gamma_3'= \gamma_1\gamma_2, \gamma_4'=\gamma_5\gamma_4?\]

shivahcu's picture 22-02-04 09:02:08 n

[QUE/QFT-06007] QFT-PROBLEM

Node id: 4367page

Show that under time reversal \(\bar{u}(p) \to u(—p)B \) and \(v(p) \to \bar{v}(—p) B\). Use this to show that under \(P T\) together \[\bar{u}(p{'}) \gamma_{\alpha_1} \gamma_{\alpha_2}\ldots \gamma_{\alpha_n} u(p) \to \bar{u}(p)\gamma_{\alpha_n}\gamma_{\alpha_{n-1}}\ldots \gamma_{\alpha_1} u(p{'}) \]

shivahcu's picture 22-02-04 09:02:34 n

[QUE/QFT-06006 QFT-PROBLEM

Node id: 4366page

Let \(p^\mu\) be a time like momentum vector. Let \(n^\mu\) be a four vector such that \begin{equation} n^\mu p_\mu=0, \text{ and } n^\mu n_\mu=-1. \end{equation} How many such independent four vectors \(n^\mu\) exist? How that the operators \begin{equation} \Pi^\pm_n =\frac{1}{2}\big(1\pm \gamma_5 n\!\!\!{n}\big) \end{equation} are projection operators satisfying. \begin{equation} \Pi^{(+)2}_n = \Pi^{(-)2}_n = I, \qquad \Pi^{(+)}_n \Pi^{(-)}_n =0. \end{equation} The notation here is same as in Bjorken and Drell, Gasiorowicz.

shivahcu's picture 22-02-04 09:02:59 n

[QUE/QFT-06005] QFT-PROBLEM

Node id: 4365page

Let \(a_{\mu\nu} \) give the Lorentz transformation \[x'^{\mu}=a_{\mu\nu} x^\nu.\] Show that there exists an invertible matrix \(S\) such that \[S\gamma_\mu S^{-1}= a_{\mu\nu}\gamma^\nu . \]

shivahcu's picture 22-02-04 09:02:18 n

[QUE/QFT-06003] QFT-PROBLEM

Node id: 4354page

 $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\newcommand{\dd}[2][]{\frac{d#1}{d#2}}${}$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}${}$\newcommand{\ket}[1]{|#1\rangle}$ {} $\newcommand{\bra}[1]{\langle #1|}$
Compute the matrix element \[ \matrixelement{s,\vec{q}}{J_\mu(x)}{r,\vec{p}}\] % where \(J_\mu(x)\) is the current for a Dirac particle and \( \ket{s,\vec{q}}\) and \(\ket{r,\vec{p}} \) denote one particle states of spin half particle with spin and momenta as specified.

shivahcu's picture 22-02-04 09:02:09 n

[QUE/QFT-06002] QFT-PROBLEM

Node id: 4353page

For a real free Dirac field, mass \(m\), compute \[ \matrixelement{0}{\psi(x)\psi(y)}{\vec{p},r; \vec{q},s}\] and show that the result is properly anti-symmetrized wave function for two identical fermions with momenta \(\vec{p},r;\vec{q},s\) and spins \(r,s\). Here \(\ket{\vec{k}, \vec{q}}\) is the state with two fermions with momenta \(\vec{p}, \vec{q}\) and spins \(r,s\).

shivahcu's picture 22-02-04 09:02:20 n

[QUE/QFT-06001] QFT-PROBLEM

Node id: 4352page
  • [] Let \(\Gamma\) denote a product of Dirac matrices. Define \(\widetilde{\Gamma}\) by \begin{equation*} \bar{u}(s,q) \widetilde{\Gamma}u(r,p) = (\bar{u}(r,p)^\dagger\Gamma u(s,q))^* . \end{equation*}
  • Use the above definition of \(\widetilde{\Gamma}\) and show that \[\widetilde{\Gamma} = \gamma_0 \Gamma^\dagger \gamma_0. \]
  • Show that
    • \vspace{-3mm}
    • \(\widetilde{\gamma^\mu} = \gamma^\mu \) 
    • \(\widetilde{\gamma_5} = -\gamma_5\) 
    • \(\widetilde{\gamma^\mu \gamma_5}= - \gamma^\mu \gamma_5\)
  • Compute \(\widetilde{\sigma}_{0k}\) and \(\widetilde{\sigma}_{ij}\) and hence show that \(\widetilde{\sigma}_{\mu\nu}=\sigma_{\mu\nu}\)
shivahcu's picture 22-02-04 09:02:54 n

Pages

 
X