Notices
 

Browse & Filter

For page specific messages
For page author info
Enter a comma separated list of user names.
2651 records found.
Operations
Selected 20 rows in this page.  
Title+Summary Name Datesort ascending

[QUE/QM-08013]

Node id: 2740page

Compute average of kinetic and potential energies     \[  \text{K.E.} = \frac{p^2}{2m},\qquad \text{P.E.}=       \frac{1}{2}m\omega^2x^2.\]   in the \(n^\text{th}\) excited state and show that the the average of total   energy is \(\frac{1}{2}\hbar \omega\).

kapoor's picture 22-04-11 17:04:13 n

[QUE/QM-08012]

Node id: 2741page

Using the properties of the ladder operators \(a, a^\dagger\) and the number operator \(N\), compute the average values of kinetic and potential energies for a harmonic oscillator in the \(n^\text{th}\) state \(|n\rangle\). Verify that their sum equals \((n + 1/2)\hbar\omega\).

kapoor's picture 22-04-11 17:04:54 n

[QUE/QM-08011]

Node id: 2742page

Prove the following commutation relation \begin{equation} [L_z, (L_+)^n] =  n \hbar (L_+)^n\end{equation}

kapoor's picture 22-04-11 17:04:18 n

[QUE/QM-08010]

Node id: 2743page

 Prove that if an operator commutes with any two of the three components of  angular momentum, then it commutes with the third component also.

kapoor's picture 22-04-11 17:04:35 n

[QUE/QM-08009]

Node id: 2744page

Compute average of kinetic and potential energies     \[  \text{K.E.} = \frac{p^2}{2m},\qquad \text{P.E.}=  \frac{1}{2}m\omega^2x^2.\]   in the \(n^\text{th}\) excited state and show that the the average of total   energy is \(\frac{1}{2}\hbar \omega\).

kapoor's picture 22-04-11 13:04:52 n

[QUE/QM-08008]

Node id: 2745page

For a harmonic oscillator in \(n^\text{th}\) excited state, compute \(\Delta q\) and \(\Delta p\) and show that           \[ \Delta q \Delta p =\big(n+\frac{1}{2}\big)\hbar.\]

kapoor's picture 22-04-11 13:04:21 n

[QUE/QM-08007]

Node id: 2746page

Let $Y_{\ell m}(\theta,\phi)$ denote the  simultaneous normalized eigenfunctions of $L^2$ and $L_z$ operators. Use the properties of the ladder operators, $L_\pm$, and construct the expressions for $Y_{lm}(\theta,\phi)$ for $l=2$ and $m=2,1,0,-1,-2$.

  1. Note that $Y_{\ell\ell}(\theta,\phi)$ satisfies\begin{eqnarray} L_z Y_{\ell\ell}(\theta,\phi) &=& \ell \hbar Y_{\ell\ell}(\theta, \phi)\nonumber\\ L_+ Y_{\ell\ell}(\theta,\phi) &=& 0. \nonumber\end{eqnarray}  Set up the above differential equations and solve them using separation of  variables and find (normalized) $Y_{2,2}$.
  2. Next apply $L_-$ repeatedly on \(Y_{2,2}\) and use $$L_- Y_{\ell, m} = \sqrt{\ell(\ell + 1)-m(m - 1)}\,  \hbar\,Y_{\ell(m-1)}$$ to successively construct $Y_{2,m}$ for other values $m =  1, 0,-1,-2$.
  3. Normalize your answers and compare them with known expressions of $Y_{2m}(\theta,\phi), m=-2,-1,0,1,2.$

Hint:
Use coordinate space representation  for angular mormentum operators.

 

kapoor's picture 22-04-11 13:04:17 n

[QUE/QM-08006]

Node id: 2747page
  1. What are the eigenvalues of $L^2 + \alpha L_x + \beta L_y + \gamma L_z$ for $\ell=2$. Give a full explanation for your answer.
  2. Construct matrices for $L_x,L_y, L_z$ for $\ell=1$ case and verify that $L^2$ is a multiple of identity.
kapoor's picture 22-04-11 13:04:55 n

[QUE/QM-08005]

Node id: 2748page

The the exact zero point energy of a system  several uncoupled oscillators, all having frequency \(\omega_0\), is given to be \(314.5 \hbar \omega_0\). What is the energy of first excited state?

kapoor's picture 22-04-11 13:04:13 n

[QUE/QM-08004]

Node id: 2749page

Let \(|n\rangle\) denote the \(n^\text{th}\) excited state of a harmonic  oscillator. Show that   \begin{equation*}       \langle n| x |m\rangle= \sqrt{\frac{\hbar}{2m\omega}}\Big(  \sqrt{n+1}\delta_{m, n+1} + \sqrt{n}\delta_{m, n-1} \Big)       \end{equation*}

kapoor's picture 22-04-11 13:04:41 n

[QUE/QM-08003]

Node id: 2750page

Compute average value \(\langle{n}|{q^4}|\rangle\) of \(q^4\) in the \(n^\text{th}\)   energy state of  harmonic oscillator.

kapoor's picture 22-04-11 13:04:13 n

[QUE/QM-08002]

Node id: 2751page

State if the combinations of $j,m$ values, in the table given below, are allowed or not. Complete the table by writing ALLOWED/NOT ALLOWED in the second column and specifying a reason in support of your answer selecting a reason from the list, $(R1)-(R5)$, given below. In case you do not find a valid or appropriate reason listed below, feel free to select option (R6) and specify your reason.\footnote{This question requires knowledge of angular momentum eigenvalues.}\\ {\bf{List of Possible Reasons:}}

  1. [(R1)]All values of $jm$ are allowed.
  2. [(R2)]Not allowed because $m$ is not an integer
  3. [(R3)]Allowed because all vales of $m$ in the range $-j$ to $+j$ are allowed
  4. [(R4)]Not allowed because $j,m$ must be an integers
  5. [(R5)]Not allowed because both $j,m$ must be integers, or half integers.
  6. [(R6)]Any other reason, please specify for each case separately
kapoor's picture 22-04-11 13:04:33 n

[QUE/QM-08001]

Node id: 2752page

The potential energy of two protons in hydrogen molecule ion in a model is given below \begin{eqnarray}
   V(x) &=& |E_1| f(x) \\
   f(x) &=& - 1 + \frac{2}{x}\left[ \frac{(1-(2/3)x^2) e^{-x} + (1+x) e^{-2x}}
   {1+(1+x+x^2/3) e^{-x} }\right], \qquad x=R/a
\end{eqnarray}
$E_1= 13.6 \text{ eV}$ is the ground state energy of H atom and $a$ is the Bohr  radius $\hbar^2/me^2$. The graph of this  function $f(x)$ is reproduced below. Find numerical values of the bond length in ${A^o}$, the zero point energy and spacing of vibrational spectrum, both energies in electron volts.

NoteThe expression for $V(x)$ is taken from an approximate variational calculation of energy of the H molecule ion in Born Oppenheimer approximation.

kapoor's picture 22-04-11 13:04:49 n

[QUE/QM-10001]

Node id: 2762page

Find the momentum space wave function if the coordinate space wave function is

  1. $\psi(x) = C \exp(-|x|/L)$     
  2. $\psi(x) = C \exp(-x^2/2\alpha^2)$
kapoor's picture 22-04-11 13:04:22 n

[QUE/QM-10002]

Node id: 2763page

The spherical harmonics $Y_{lm}(\theta,\phi)$ are normalized simultaneous eigenfunctions of $L^2$ and $L_z$ operators. Use the co-ordinate space expressions

\begin{eqnarray*}
L_x &=& i\hbar \Big( \sin\phi {\partial\over \partial\theta } + \cot \theta
 \cos\phi{\partial\over \partial \phi} \Big)\\
L_y &=& i\hbar \Big(-\cos\phi {\partial\over \partial\theta } + \cot \theta
 \sin\phi{\partial\over \partial \phi} \Big)\\
L_z &=& -i\hbar {\partial\over\partial \phi}
\end{eqnarray*}

Note : For the orbital angular momentum operators and the properties of the ladder operators, $L^\pm$, and construct expressions for $Y_{lm}(\theta,\phi)$ for
$l=2$ and $m=2,1,0,-1,-2$.

kapoor's picture 22-04-11 13:04:45 n

[QUE/QM-13001]

Node id: 2767page

Using a suitable definition find the classical probability  that  a classical harmonic oscillator   will be found with position in the range \(x, x+dx\). Plot your answer as function of \(x\). Compare the plot of classical probability  with the probability as given by quantum mechanics for \(n^{th}\)  excited state for large \(n\).

kapoor's picture 22-04-11 13:04:34 n

[QUE/QM-10013]

Node id: 2780page
  1. What tells you that $|\langle x|\psi\rangle|^2$ gives the probability for position?
  2. A particle has definite momentum $p_0$, what is the differential equation satisfied by its coordinate space wave function? WHY ?
  3. A particle has definite position $x_0$, what is the differential equation satisfied by its momentum space wave function? WHY ?
  4. Outline the sequence of steps showing that the coordinate and momentum wave functions should be Fourier transforms of each other.
kapoor's picture 22-04-11 13:04:31 n

[QUE/QM-10011]

Node id: 2782page

Show that the parity operator $P$ defined by $$  P \psi(\vec{r}) = \psi(-\vec{r}) $$ obeys the commutation relations.

  1. $[ \hat{P}, \hat{x} ]_+ =0$
  2. $[ \hat{P}, \hat{p}_x ] _+ =0$
  3. $[ \hat{P}, \hat{x}^2 ] =0$
  4. $[ \hat{P}, \hat{\vec{p}}^{2}] =0$

kapoor's picture 22-04-11 13:04:53 n

[QUE/QM-10010]

Node id: 2783page

     Let $V(r)$ be a function of $r$ alone and independent of $\theta$,  and   $\phi $. Show that the angular momentum operators $ L_x, L_y$ and  $L_z$ commute with $\hat{V}(r).$     

{[ Hint: Derive expressions for angular momentum operators in $r, \theta$             and $\phi$ variables ]}

kapoor's picture 22-04-11 13:04:15 n

[QUE/QM-10008]

Node id: 2784page

 Compute  $$U(a)\  \vec{r} \ U^\dagger(a) $$  where  $$U(a) = \exp(-i\vec{a}\cdot \hat{\vec{p}})$$  where $\vec{a}$ are numbers.

kapoor's picture 22-04-11 13:04:58 n

Pages

 
X