Using the properties of the ladder operators \(a, a^\dagger\) and the number operator \(N\), compute the average values of kinetic and potential energies for a harmonic oscillator in the \(n^\text{th}\) state \(|n\rangle\). Verify that their sum equals \((n + 1/2)\hbar\omega\).
Exclude node summary :
n
Exclude node links:
0
4727:Diamond Point
0





||Message]