Notices
 

Browse & Filter

For page specific messages
For page author info
Enter a comma separated list of user names.
2654 records found.
Operations
Selected 20 rows in this page.  
Title+Summary Name Datesort ascending

[QUE/QM-10010]

Node id: 2783page

     Let $V(r)$ be a function of $r$ alone and independent of $\theta$,  and   $\phi $. Show that the angular momentum operators $ L_x, L_y$ and  $L_z$ commute with $\hat{V}(r).$     

{[ Hint: Derive expressions for angular momentum operators in $r, \theta$             and $\phi$ variables ]}

kapoor's picture 22-04-11 13:04:15 n

[QUE/QM-10008]

Node id: 2784page

 Compute  $$U(a)\  \vec{r} \ U^\dagger(a) $$  where  $$U(a) = \exp(-i\vec{a}\cdot \hat{\vec{p}})$$  where $\vec{a}$ are numbers.

kapoor's picture 22-04-11 13:04:58 n

[QUE/QM-10007]

Node id: 2785page
Show that
  • $\displaystyle \left[ \hat{p}_x, F(\vec{r}) \right] = -i \hbar {\partial F\over \partial x} $
  • $\displaystyle \left[ \hat{x}, G(\vec{p}) \right] = -i \hbar {\partial G\over \partial p_x}$
kapoor's picture 22-04-11 13:04:33 n

[QUE/QM-10006]

Node id: 2786page
  1. Express the following operators in terms of $a$ and $a^\dagger$. $$ (i) \ \hat{x}\qquad (ii)\ \hat{p}\qquad (iii)\ \hat{x}^2 \qquad (iv)\ \hat{p}^2 $$
  2. Using the properties of operators $a$ and $a^\dagger$ compute the $m n$ matrix elements of the four operators given in part (a) in the harmonic oscillator basis.
  3. What answer do you expect for the matrix elements of the Hamiltonian operator $$ \hat{H} = { \hat{p}^2\over 2m} +{1\over2}m \omega^2 \hat{x}^2 $$ Using the answers obtained in part (b) check if your guess is correct.
kapoor's picture 22-04-11 13:04:06 n

[QUE/QM-10005]

Node id: 2787page
  1. Find the matrices representing the operators $J_+, J_- \text{and} J_z$ in the basis $|jm\rangle.$
  2. Use your answers in part (a) to find the matrices for the operators $J_x$ and $J_y$.
  3. What answer do you expect for the matrix for $J^2$? Check if your guess is correct or not by computing the matrix for $L^2$ using the matrices found above.
kapoor's picture 22-04-11 13:04:54 n

[QUE/QM-10004]

Node id: 2788page
  1. Express the operators $a$ and $a^\dagger$ defined by $$ a = {( p -i m\omega x) \over \sqrt{2m\omega \hbar}}, \qquad a^\dagger = {( p +i m\omega x) \over \sqrt{2m\omega \hbar}} $$ in the co-ordinate representation and solve the equation $$ a \psi(x) = 0 $$ to determine the ground state wave function.
  2. Applying $a^\dagger$ on the ground state wave function, find the first two excited state eigen functions for the harmonic oscillator.
  3. Normalize the ground state and the two excited state eigen functions found above.
kapoor's picture 22-04-11 13:04:38 n

[QUE/QM-10003]

Node id: 2789page

 The spherical harmonics $Y_{lm}(\theta,\phi)$ are normalized simultaneous eigenfunctions of $L^2$ and $L_z$ operators. Use the co-ordinate space expressions \begin{eqnarray*} L_x &=& i\hbar \Big( \sin\phi {\partial\over \partial\theta } + \cot \theta
 \cos\phi{\partial\over \partial \phi} \Big)\\ L_y &=& i\hbar \Big(-\cos\phi {\partial\over \partial\theta } + \cot \theta
 \sin\phi{\partial\over \partial \phi} \Big)\\ L_z &=& -i\hbar {\partial\over\partial \phi} \end{eqnarray*}
\samepage{for the orbital angular momentum operators and the properties of thelladder\\operators, $L^\pm$, and construct expressions for $Y_{lm}(\theta,\phi)$ for $l=2$ and $m=2,1,0,-1,-2$.}

kapoor's picture 22-04-11 13:04:36 n

[QUE/QM-07015]

Node id: 2801page

$\newcommand{\ket}[1]{|#1\rangle}$

{Let \(\ket{E_1},\ket{E_2}\) denote normalized energy eigenstates with energies \(E_1\ne E_2\). Let \(\psi\) be the superposition  \[ \ket{\psi} = a\ket{E_1} + b\ket{E_2},\]  \(a,b\) are complex constants. Obtain an expression for the uncertainty in energy \((\Delta E)_\psi\)in the state \(\ket{\psi}\). Find all conditions so that \(\Delta E\) may be zero, and interpret the answers you get.}

kapoor's picture 22-04-11 13:04:52 n

[QUE/QM-07014]

Node id: 2802page
kapoor's picture 22-04-11 13:04:13 n

[QUE/QM-07013]

Node id: 2803page

Show that if an operator commutes with to components of angular momentum, it commutes with the third component as well.

{Daniel F. Styer}

kapoor's picture 22-04-11 13:04:19 n

[QUE/QM-07012]

Node id: 2804page
 
Consider the space of square integrable functions on a plane.  \[ \iint dx\,dy  |\psi(x,y)|^2 < \infty.\]  Define radial and angular momenta operators  \(\hat{p}_r, \hat{P}_\theta\) on the subset of functions  satisfying  \[\psi(r,\theta+2\pi) = \psi(r,\theta), \qquad \psi(r, \theta)|_{r=0} =  \psi(r,\theta)|_{r\to \infty} =0 .\]
  1. Show that \({P}_{\theta}= -i\hbar\frac{\partial}{\partial\theta}\) satisfies \[\Big(\phi(r,\theta), \hat{P}_\theta \psi(r,\theta)\Big) = \Big(\hat{P}_\theta\phi(r,\theta), \psi(r,\theta)\Big) \] and is, therefore, a hermitian operator.
  2. Find the hermitian conjugate of the operator \(\hat{p}_r\equiv-i\hbar\frac{\partial}{\partial r}\). Show that \(\hat{p}_r\) is not a hermitian operator.
  3. Find a hermitian operator \(\hat{P}_r\) that may represent radial momentum in two dimensions.
  4. Consider the classical free Hamiltonian \( H_{cl} = \frac{P_r^2}{2m} + \frac{P_\theta^2}{2mr^2}.\) Replace the classical momenta \(P_r, P_\theta\) by corresponding hermitian momentum operators \(\hat{P}_r, \hat{P}_\theta\). Compare your answer for the operator so obtained with the free particle Schr\"{o}dinger Hamiltonian \[\widehat{H}_0 = -\frac{\hbar^2}{2m}\Big(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y}\Big).\] and give your comments.
kapoor's picture 22-04-11 12:04:28 n

[QUE/QM-07011]

Node id: 2805page

A physical system has dynamical variables $X,Y,Z$ represented by the  $2\times2$ Pauli matrices $\sigma_x,\sigma_y,\sigma_z$.
Compute the average value of $\ell X + m Y + n Z $ in any one state in   which $a X + b Y + c Z $ has a definite value. Assume        $\ell^2 + m^2 +n^2=1$ and $a^2 + b^2 + c^2=1$.

kapoor's picture 22-04-11 12:04:57 n

[QUE/QM-07009]

Node id: 2807page

     A physical system has dynamical variables $X,Y,Z$ represented by the
     $2\times2$ Pauli matrices $\sigma_x,\sigma_y,\sigma_z$.
     
      Compute the average values of  the following operators in the specified
      states.

  1. The average of $X$ in the state represented by the vector $\begin{pmatrix}1 \\ 2\end{pmatrix}.$
  2. The average value of $Y+Z$ in the state in which the variable $X$ has a definite value -1 for $X$.
kapoor's picture 22-04-11 12:04:21 n

[QUE/QM-07008]

Node id: 2808page

     A physical system has dynamical variables $X,Y,Z$ represented by the   $2\times2$ Pauli matrices $\sigma_x,\sigma_y,\sigma_z$.

      In each of the following cases find out if the dynamical variables can  be measured simultaneously or not.

A physical system has dynamical variables $X,Y,Z$ represented by the $2\times2$ Pauli matrices $\sigma_x,\sigma_y,\sigma_z$. In each of the following cases find out if the dynamical variables can be measured simultaneously or not.

  1. $X $ and $Y$
  2. $Y$ and $Z$
  3. $Y^2$ and $Z$.


     

kapoor's picture 22-04-11 12:04:19 n

[QUE/QM-07007]

Node id: 2809page

A physical system has dynamical variables $X,Y,Z$ represented by the $2\times2$ Pauli matrices $\sigma_x,\sigma_y,\sigma_z$.

Compute the average values and uncertainties of $X,Y$ and $Z $  in a state represented by
$$ \chi = \begin{pmatrix} 1 + 2i \\ 1-3i  \end{pmatrix} $$

kapoor's picture 22-04-11 12:04:06 n

[QUE/QM-07006]

Node id: 2810page

Use the uncertainty principle to estimate the ground state energy of  harmonic oscillator.

kapoor's picture 22-04-10 18:04:07 n

[QUE/QM-16009]

Node id: 2820page
  1. Show that the average value of kinetic energy for a particle in one dimension having the wave function \(\psi(x)\) is \[ \langle \text{K.E.}\rangle = \frac{\hbar^2}{2m}\int_{-\infty} ^ \infty |\psi(x)|^2\, dx.\]
  2. Obtain a similar formula for the average of kinetic energy in three dimensions for a particle if the wave function \(\psi(r)\) is independent of polar coordinates \(\theta, \phi\).
  3. Can one write down a similar result for the general case in polar coordinates when the wave fucntion depends on all the three variables \(r,\theta,\phi\)?
kapoor's picture 22-04-10 18:04:04 n

[QUE/QM-16008]

Node id: 2821page
  1. Express the angular momentum operators \begin{eqnarray} \hat{L}_x &=& -i\hbar{\hat{y} \frac{\partial}{\partial z} - \hat{z} \frac{\partial}{\partial y} }\label{EQ01}\\ \hat{L}_y &=& -i\hbar{\hat{z} \frac{\partial}{\partial x} - \hat{x} \frac{\partial}{\partial z} }\label{EQ02}\\ \hat{L}_z &=& -i\hbar{\hat{x} \frac{\partial}{\partial y} - \hat{y} \frac{\partial}{\partial x} }\label{EQ03} \end{eqnarray} in polar coordinates and show \begin{eqnarray} \hat{L}_x &=& i\hbar \left(\sin\phi \frac{\partial}{\partial \theta} +\cot\theta\cos\phi\frac{\partial}{\partial \phi} \right)\label{EQ04}\\ \hat{L}_x &=& i\hbar \left(\sin\phi \frac{\partial}{\partial \theta} +\cot\theta\cos\phi\frac{\partial}{\partial \phi} \right)\label{EQ05}\\ \hat{L}_z &= & i\hbar \frac{\partial }{\partial \phi}\label{EQ06} \end{eqnarray}
  2. Use the result of the previous part and show that The operator $\vec{L}^2$ in spherical polar coordinates is given by \begin{equation} \vec{L}^2 = \hat{L}_x^2 +\hat{L}_y^2 + \hat{L}_z^2 \label{EQ07} \end{equation} takes the form \begin{equation}\label{EQ08} \vec{L}^2 = -\hbar^2\left[ \frac{1}{\sin\theta} \frac{\partial}{\partial\theta}\left(\sin\theta \frac{\partial}{\partial\theta} \right) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial \phi^2} \right] \end{equation}
kapoor's picture 22-04-10 18:04:26 n

[QUE/QM-16010]

Node id: 2819page

How  much energy in eV will be required to ionize a H  atom which is in the excited state \(n=3\)? Use calculator to get the answer upto significant number of places. Take the value of the Rydberg constant to be \(R = 109737.3177 \mbox{cm}^{-1}\)

kapoor's picture 22-04-10 11:04:07 n

[QUE/QM-16011]

Node id: 2818page

The wave function of a particle has the form   \begin{equation*}     \psi(r\theta,\phi) = \chi(r)( A\cos^7\theta + B \cos^3\theta + C \cos2\phi)   \end{equation*}    where \(\chi(r)\) is radial part of the wave function dependent only on \(r\).   A measurement of \(\vec{L}^2\) and \(L_z\) is made. What values do you expect   for \(\vec{L}^2\)? for \(L_z\)?

kapoor's picture 22-04-10 11:04:01 n

Pages

 
X