|
|
SampleRankingQuiz Node id: 275page |
|
22-04-25 19:04:37 |
n |
|
|
[QUE/GT-02006]Node id: 3796pageFor permutation group of 3 objects
- Construct the multiplication table;
- Find cosets of the group;
- Verify that the classes of $S_3$ are $$\{e\},\{(1,2),(2,3),(1,3)\},\{(1,2,3),(1,3,2)\}$$
|
|
22-04-25 09:04:07 |
n |
|
|
[QUE/GT-02002]Node id: 3793pageList all the elements of symmetries of a square and construct the group multiplication table. Use the multiplication table construct the class multiplication rules.}

Notation:Name the group elements as follows.
- Anticlockwise rotation about \(z\)- axis by angle \(\pi/2\) \(:\to 4_z\).
- Anticlockwise rotation about \(z\)- axis by angle \(\pi\)\(:\to 4_z^2\).
- Anticlockwise rotation about \(z\)- axis by angle \(3\pi/2\)\(:\to 4_z^3\).
- Reflection in a plane perpendicular to \(X\)- axis \(:\to m_x\)
- Reflection in a plane perpendicular to \(Y\)- axis \(:\to m_y\)
- Reflection in plane containing \(Z\)- axis and diagonal 13 \(:\to m_{13}\)
- Reflection in plane containing \(Z\)- axis and diagonal 24 \(:\to m_{24}\)
The classes are given to be\\ \begin{equation*} \begin{array}{ll} C_1=\{e\}.& \\ C_2 =\{4_z^2\} &C_3 =\{4_z, 4_z^3\} \\ C_4=\{m_x, m_y\} &C_5 =\{m_{13}, m_{24}\} \end{array}\end{equation*}
|
|
22-04-25 09:04:22 |
n |
|
|
[QUE/VS-10005]Node id: 3786pageGive an example of a \(3\times 3\) matrix \(P\) such that \(P^2= P\).
|
|
22-04-25 09:04:42 |
n |
|
|
[QUE/VS-10006]Node id: 3785pageIn \(C^3\) with scalar product \((x,y)=x^\dagger y\) find the adjoint of operator \(A\) where \(A\) is defined to be \begin{equation} A \begin{pmatrix}x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix}x_1+ x_2\\ x_2+x_3 \\ x_3+x_1\end{pmatrix} \end{equation}
|
|
22-04-25 09:04:35 |
n |
|
|
[QUE/VS-10004]Node id: 3784pageGive an example of a positive definite \(3\times 3\) matrix with all matrix elements non zero.
|
|
22-04-25 09:04:11 |
n |
|
|
[QUE/VS-10003]Node id: 3783pageConsider the vector space of all polynomials \(p(t)\) of degree less than or 5 with inner product \[((p,q) = \int_{-1}^1 p(t) q(t) \, t^2\, dt \] Is the operator \[ A p(t) = \frac{ d p(t)} {dt}\] self adjoint?
|
|
22-04-25 09:04:46 |
n |
|
|
[QUE/QCQI-01001]Node id: 3807pageGiven two normalized vectors \(\chi_1\) and \(\chi_2\): \begin{equation} \chi_1=\begin{pmatrix}\cos\alpha\\ \sin\alpha\end{pmatrix}\qquad \chi_2=\begin{pmatrix}\cos\beta\\ \sin\beta\end{pmatrix}, \end{equation} find conditions on \(\alpha,\beta \) so that \(\chi_1+\chi_2\) may be a normalized vector. Answer : \(\alpha-\beta=\frac{2\pi}{3}, or \frac{4\pi}{3}\) Source: W.H. Steeb*
|
|
22-04-25 09:04:03 |
n |
|
|
[QUE/VS-10002]Node id: 3782pageThe matrix of a linear operator \(A\) in an orthonormal basis \(\{e_1, e_2, e_3\}\) is given to be \begin{equation} \underline{\sf A} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \end{equation} Is this operator unitary? How is the basis \(\{f_1, f_2,f_3\}\) in which the operator is diagonal related to \(\{e_1, e_2,e_3\}\)?
|
|
22-04-25 09:04:41 |
n |
|
|
[QUE/GT-02007]Node id: 3797pageFind all left and right cosets of the group of permutations on three objects, $S_3$ taking the subgroup to be
- $H_1=\big\{e, (1,2)\big\}$
- $H_2=\big\{e, (1,3)\big\}$
- $H_3=\big\{e, (2,3)\big\}$
- $H_4=\big\{e, (1,2,3),(1,3,2)\big\}$
|
|
22-04-25 09:04:34 |
n |
|
|
[QUE/GT-02004]Node id: 3795pageThe classes of the permutation group $S_3$ are given to be $$ C_0 =\{e\}, C_1=\{(1,2),(1,3),(2,3)\}, C_2 = \{(1,2,3),(1,3,2)\} $$ Express $C_1^2,C_2^2$ and $C_1 C_2$ in terms of the classes and find the class constants.
|
|
22-04-25 09:04:57 |
n |
|
|
[QUE/VS-10001]Node id: 3781pageIn the Hilbert space of square integrable functions \(L^2(-\infty, \infty)\) find adjoint of an operator \(X\) defined by \[ T \psi(x) = \psi(ax+b),\quad a\ne0, \text{ and } a,b\in R \]
|
|
22-04-25 09:04:49 |
n |
|
|
[QUE/02003]-GTNode id: 3794pageWhat is the number of irreducible representations of the D-4 group. Find their dimensions and construct the character table for the group. You may use the notation and information given below.}
- $\oslash$ Notation for group elements
- Anticlockwise rotation about \(z\)- axis by angle \(\pi/2\) \(:\to 4_z\).
- Anticlockwise rotation about \(z\)- axis by angle \(\pi\)\(:\to 4_z^2\).
- Anticlockwise rotation about \(z\)- axis by angle \(3\pi/2\)\(:\to 4_z^3\).
- Reflection in a plane perpendicular to \(X\)- axis \(:\to m_x\)
- Reflection in a plane perpendicular to \(Y\)- axis \(:\to m_y\)
- Reflection in plane containing \(Z\)- axis and diagonal 13 \(:\to m_{13}\)
- Reflection in plane containing \(Z\)- axis and diagonal 24 \(:\to m_{24}\)
The classes are given to be \begin{equation*} \begin{array}{ll} C_1=\{e\}.& \\ C_2 =\{4_z^2\} &C_3 =\{4_z, 4_z^3\} \\ C_4=\{m_x, m_y\} &C_5 =\{m_{13}, m_{24}\} \end{array}
You may use class multiplication rules \begin{equation*} \begin{array}{llll} C_2^2=C_1 & C_2C_3=C_3 & C_2C_4=C_4 & C_2C_5 = C_5\\ C_3^2 = 2C_1+C_2 & C_3C_4= 2C_5 & C_3 C_5 = 2C_4 &\\ C_4^2 =2C_1+2C_2 & C_4 C_5= 2C_3 &&\\ C_5^2= 2C_1+2C_2 &&& \end{array} \end{equation*}

|
|
22-04-25 08:04:58 |
n |
|
|
[QUE/VS-11002]Node id: 3792pageConsider the operator \[ A p(t) = \frac{d p(t)}{dt}, \quad \text{on } P^3(t).\] Is the subspace \(P^2(t) \) an invariant subspace of the operator \(A\)? Notation: \(P^n(t) \) is space of all polynomials of degree less than or equal to \(n\).
|
|
22-04-25 08:04:28 |
n |
|
|
[QUE/VS-01-001] Periodic motionNode id: 3698pageConsider the set of all vectors \(\xi=(\xi_1,\xi_2,\xi_3)\) in \(\C^(3)\) for which
- \(\xi_1\) is real
- \(\xi=0\)
- \(|\xi_1|> 0\)
- either \(\xi_1\) or \(\xi_2\) equal to zero
- \(\xi_1+\xi_2=0\)
- \(\xi_1+\xi_2=1\)
In which of the above cases do the set of all vectors form \(\xi\) form a vector space?
|
|
22-04-25 08:04:45 |
n |
|
|
[QUE/VS-11001]Node id: 3791pageLet \(A\) be an operator having eigenvalues 4 and 9 and corresponding eigenvectors are \begin{equation*} e_1 =\begin{pmatrix} 1 \\ i \end{pmatrix};\qquad e_2=\begin{pmatrix}-1\\i\end{pmatrix}\\[-6mm] \end{equation*} For an arbitrary vector \(f=\begin{pmatrix}\alpha \\ \beta \end{pmatrix}\) find the vectors
- \(A f\)
- \(\sqrt{A} f\)
- \(A^2 f\)
- \(\exp\Big(i\pi A/6 f \Big)\)
Write the matrices for (i) \(\sqrt{A}\), (ii) \(\exp\big(i\pi A/6 f\big)\).
|
|
22-04-25 08:04:50 |
n |
|
|
[QUE/GT-02008]Node id: 3798pageFind all subgroups of the group of permutations $S_3$ on three objects. For each subgroup check if it is an invariant subgroup. For each class, explicitly verify the result that every invariant subgroup either contains all elements of the class, or else is disjoint from the class.
|
|
22-04-25 08:04:59 |
n |
|
|
[QUE/VS-10011]Node id: 3790pageFind the adjoint of an operator \(S\) defined in the space of square integrable functions by the equation \[ S f(x) = \alpha f(2x) \] Find value of \(\alpha\) so that \(S\) may be unitary.
|
|
22-04-25 08:04:17 |
n |
|
|
[QUE/VS-10010]Node id: 3789pageIn vector space of square integrable functions an operator \(T\) is defined as \[ T f(x)=\frac{1}{\sqrt{2}} f(2x+3)\] Find \(T^\dagger\) and check if \(T\) is (i) hermitian, (ii) unitary.
|
|
22-04-25 08:04:34 |
n |
|
|
[QUE/VS-10008]Node id: 3788pageIn \(C^3\) with scalar product \((x,y)=x^\dagger y\) find the adjoint of operator \(A\) where \(A\) is defined to be \begin{equation} A \begin{pmatrix}x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix}x_1+ i x_3\\ x_2+i x_1 - ix_3 \\ x_1-i x_3\end{pmatrix} \end{equation}
|
|
22-04-25 08:04:42 |
n |