Notices
 

Browse & Filter

For page specific messages
For page author info
Enter a comma separated list of user names.
2644 records found.
Operations
Selected 20 rows in this page.  
Title+Summary Name Datesort ascending

SampleRankingQuiz

Node id: 275page
kapoor's picture 22-04-25 19:04:37 n

[QUE/GT-02006]

Node id: 3796page

For permutation group of 3 objects

  1. Construct  the multiplication table;
  2. Find cosets of the group;
  3. Verify that the classes of $S_3$ are   $$\{e\},\{(1,2),(2,3),(1,3)\},\{(1,2,3),(1,3,2)\}$$

 

kapoor's picture 22-04-25 09:04:07 n

[QUE/GT-02002]

Node id: 3793page

List all the elements of symmetries of a square and construct the
group multiplication table. Use the multiplication table construct the class
multiplication rules.}


Notation:Name  the group elements as follows.

  • Anticlockwise rotation about \(z\)- axis by angle \(\pi/2\) \(:\to 4_z\).
  • Anticlockwise rotation about \(z\)- axis by angle \(\pi\)\(:\to 4_z^2\).
  • Anticlockwise rotation about \(z\)- axis by angle \(3\pi/2\)\(:\to 4_z^3\).
  • Reflection in a plane perpendicular to \(X\)- axis \(:\to m_x\)
  • Reflection in a plane perpendicular to \(Y\)- axis \(:\to m_y\)
  • Reflection in plane containing \(Z\)- axis and diagonal 13 \(:\to m_{13}\)
  • Reflection in plane containing \(Z\)- axis and diagonal 24 \(:\to m_{24}\)

The classes are given to be\\
\begin{equation*} \begin{array}{ll} C_1=\{e\}.&  \\ C_2 =\{4_z^2\} &C_3 =\{4_z,
4_z^3\} \\ C_4=\{m_x, m_y\} &C_5 =\{m_{13}, m_{24}\} \end{array}\end{equation*}

kapoor's picture 22-04-25 09:04:22 n

[QUE/VS-10005]

Node id: 3786page

Give an example of a \(3\times 3\) matrix \(P\) such that \(P^2= P\).

kapoor's picture 22-04-25 09:04:42 n

[QUE/VS-10006]

Node id: 3785page

In \(C^3\) with scalar product \((x,y)=x^\dagger y\) find the adjoint of operator \(A\) where \(A\) is defined to be
\begin{equation}
    A  \begin{pmatrix}x_1\\ x_2\\ x_3 \end{pmatrix}
     = \begin{pmatrix}x_1+ x_2\\ x_2+x_3 \\ x_3+x_1\end{pmatrix}
\end{equation}

kapoor's picture 22-04-25 09:04:35 n

[QUE/VS-10004]

Node id: 3784page

Give an example of a positive definite \(3\times 3\) matrix with all matrix elements non zero.

kapoor's picture 22-04-25 09:04:11 n

[QUE/VS-10003]

Node id: 3783page

Consider the vector  space of all polynomials \(p(t)\) of degree less than or 5 with inner product
\[((p,q) = \int_{-1}^1 p(t) q(t) \, t^2\, dt \]  Is the operator \[ A p(t) = \frac{ d p(t)} {dt}\]
self adjoint?

kapoor's picture 22-04-25 09:04:46 n

[QUE/QCQI-01001]

Node id: 3807page

Given two normalized vectors \(\chi_1\) and \(\chi_2\):
\begin{equation}
 \chi_1=\begin{pmatrix}\cos\alpha\\ \sin\alpha\end{pmatrix}\qquad
  \chi_2=\begin{pmatrix}\cos\beta\\ \sin\beta\end{pmatrix},
\end{equation}
find conditions on \(\alpha,\beta \) so that \(\chi_1+\chi_2\) may be a normalized vector.
Answer : \(\alpha-\beta=\frac{2\pi}{3}, or \frac{4\pi}{3}\)
Source: W.H. Steeb*

kapoor's picture 22-04-25 09:04:03 n

[QUE/VS-10002]

Node id: 3782page

The matrix of a linear operator \(A\) in an orthonormal basis \(\{e_1, e_2,
e_3\}\) is given to be
\begin{equation}
  \underline{\sf A} = \begin{pmatrix}
                        0 & 1 & 0 \\
                        0 & 0 & 1 \\
                        1 & 0 & 0
                      \end{pmatrix}
\end{equation}
Is this operator unitary? How is the basis \(\{f_1, f_2,f_3\}\)
 in which the operator is diagonal related to \(\{e_1, e_2,e_3\}\)?

kapoor's picture 22-04-25 09:04:41 n

[QUE/GT-02007]

Node id: 3797page

Find all left and right cosets of the group of permutations on three objects, $S_3$ taking the subgroup to be

  1.  $H_1=\big\{e, (1,2)\big\}$
  2. $H_2=\big\{e, (1,3)\big\}$
  3. $H_3=\big\{e, (2,3)\big\}$
  4. $H_4=\big\{e, (1,2,3),(1,3,2)\big\}$

 

kapoor's picture 22-04-25 09:04:34 n

[QUE/GT-02004]

Node id: 3795page

The classes of the permutation group  $S_3$ are given to be $$ C_0 =\{e\}, C_1=\{(1,2),(1,3),(2,3)\}, C_2 = \{(1,2,3),(1,3,2)\} $$ Express $C_1^2,C_2^2$ and $C_1 C_2$  in terms of the classes and find the class constants.

kapoor's picture 22-04-25 09:04:57 n

[QUE/VS-10001]

Node id: 3781page

In the Hilbert space of square integrable functions \(L^2(-\infty, \infty)\) find adjoint of an operator \(X\) defined by        \[  T \psi(x) = \psi(ax+b),\quad a\ne0, \text{ and } a,b\in R \]

kapoor's picture 22-04-25 09:04:49 n

[QUE/02003]-GT

Node id: 3794page

What is the number of irreducible representations of the D-4 group.
Find their dimensions and construct the character table for the group.
You may use the notation and information given below.}

  • $\oslash$ Notation for group elements
  • Anticlockwise rotation about \(z\)- axis by angle \(\pi/2\) \(:\to 4_z\).
  • Anticlockwise rotation about \(z\)- axis by angle \(\pi\)\(:\to 4_z^2\).
  • Anticlockwise rotation about \(z\)- axis by angle \(3\pi/2\)\(:\to 4_z^3\).
  • Reflection in a plane perpendicular to \(X\)- axis \(:\to m_x\)
  • Reflection in a plane perpendicular to \(Y\)- axis \(:\to m_y\)
  • Reflection in plane containing \(Z\)- axis and diagonal 13 \(:\to m_{13}\)
  • Reflection in plane containing \(Z\)- axis and diagonal 24 \(:\to m_{24}\)

The classes are given to be  \begin{equation*}  \begin{array}{ll} C_1=\{e\}.&  \\
C_2 =\{4_z^2\} &C_3 =\{4_z, 4_z^3\} \\
C_4=\{m_x, m_y\} &C_5 =\{m_{13}, m_{24}\}
\end{array}

You may use class multiplication rules \begin{equation*}  \begin{array}{llll}
C_2^2=C_1         & C_2C_3=C_3    & C_2C_4=C_4 & C_2C_5 = C_5\\
C_3^2 = 2C_1+C_2  & C_3C_4= 2C_5  & C_3 C_5 = 2C_4 &\\
C_4^2 =2C_1+2C_2  & C_4 C_5= 2C_3  &&\\
C_5^2= 2C_1+2C_2  &&&
\end{array} \end{equation*}

D4 Symmetries of a Square

kapoor's picture 22-04-25 08:04:58 n

[QUE/VS-11002]

Node id: 3792page

Consider the operator \[  A p(t) = \frac{d p(t)}{dt}, \quad \text{on } P^3(t).\]  Is the subspace \(P^2(t) \) an invariant  subspace of the operator \(A\)?  Notation: \(P^n(t) \) is space of all polynomials of degree less than or equal to \(n\).

kapoor's picture 22-04-25 08:04:28 n

[QUE/VS-01-001] Periodic motion

Node id: 3698page

Consider the set of all vectors \(\xi=(\xi_1,\xi_2,\xi_3)\) in \(\C^(3)\) for
which

  1. \(\xi_1\) is real 
  2. \(\xi=0\)
  3. \(|\xi_1|> 0\)
  4.  either \(\xi_1\) or \(\xi_2\) equal to zero
  5. \(\xi_1+\xi_2=0\)
  6. \(\xi_1+\xi_2=1\)

In which of the  above  cases do the set of all vectors form \(\xi\) form a vector
space?

kapoor's picture 22-04-25 08:04:45 n

[QUE/VS-11001]

Node id: 3791page

Let \(A\) be an operator having eigenvalues 4 and 9 and corresponding
eigenvectors are
\begin{equation*}
  e_1 =\begin{pmatrix} 1 \\ i \end{pmatrix};\qquad
 e_2=\begin{pmatrix}-1\\i\end{pmatrix}\\[-6mm]
\end{equation*} For an arbitrary vector \(f=\begin{pmatrix}\alpha \\ \beta \end{pmatrix}\) find the vectors

  1.  \(A f\) 
  2. \(\sqrt{A} f\)
  3. \(A^2 f\)
  4. \(\exp\Big(i\pi A/6 f \Big)\)

Write the matrices for (i) \(\sqrt{A}\), (ii) \(\exp\big(i\pi A/6 f\big)\).

kapoor's picture 22-04-25 08:04:50 n

[QUE/GT-02008]

Node id: 3798page

Find all subgroups of the group of permutations $S_3$ on three objects.
For each subgroup check if it is an invariant subgroup.
For each class, explicitly verify the result that every invariant subgroup
either contains all elements of the class, or else is disjoint from the class.

kapoor's picture 22-04-25 08:04:59 n

[QUE/VS-10011]

Node id: 3790page

Find the adjoint of an operator \(S\) defined in the space of square integrable functions by the equation  \[ S f(x) = \alpha f(2x) \]  Find value of \(\alpha\) so  that \(S\) may be unitary.

kapoor's picture 22-04-25 08:04:17 n

[QUE/VS-10010]

Node id: 3789page

In vector space of square integrable functions an operator \(T\) is defined as \[ T f(x)=\frac{1}{\sqrt{2}} f(2x+3)\] Find \(T^\dagger\) and check if \(T\) is (i) hermitian, (ii) unitary.

kapoor's picture 22-04-25 08:04:34 n

[QUE/VS-10008]

Node id: 3788page

In \(C^3\) with scalar product \((x,y)=x^\dagger y\) find the adjoint of operator \(A\) where \(A\) is defined to be
\begin{equation}
    A  \begin{pmatrix}x_1\\ x_2\\ x_3 \end{pmatrix}
     = \begin{pmatrix}x_1+ i x_3\\ x_2+i x_1 - ix_3 \\ x_1-i x_3\end{pmatrix}
\end{equation}

kapoor's picture 22-04-25 08:04:42 n

Pages

 
X