Notices
 

[QUE/QCQI-01001]

For page specific messages
For page author info

Given two normalized vectors \(\chi_1\) and \(\chi_2\):
\begin{equation}
 \chi_1=\begin{pmatrix}\cos\alpha\\ \sin\alpha\end{pmatrix}\qquad
  \chi_2=\begin{pmatrix}\cos\beta\\ \sin\beta\end{pmatrix},
\end{equation}
find conditions on \(\alpha,\beta \) so that \(\chi_1+\chi_2\) may be a normalized vector.
Answer : \(\alpha-\beta=\frac{2\pi}{3}, or \frac{4\pi}{3}\)
Source: W.H. Steeb*

Exclude node summary : 

n

4727:Diamond Point

0
 
X