|
|
[MORE/EM-09001] Ballastic GalvanometerNode id: 5438page |
|
22-08-14 17:08:56 |
n |
|
|
[NOTES/ME-06003]-Time Period of Oscillations--Method-1Node id: 5678page |
|
22-08-14 10:08:20 |
n |
|
|
[NOTES/ME-02003]-Euler AnglesNode id: 5658page |
|
22-08-14 10:08:22 |
n |
|
|
[NOTES/ME-02007]-Einstein Summation ConventionNode id: 5667page |
|
22-08-14 10:08:19 |
n |
|
|
[NOTES/ME-02008]-Active and Passive RotationNode id: 5668page |
|
22-08-14 10:08:29 |
n |
|
|
[NOTES/ME-02009]-Vectors as geometrical objectsNode id: 5669pageConvention about vectors is described. Different different symbols are used for vectors without reference to any axis, components of vector w.r.t. a system of coordinate axes, column vector notation for components
|
|
22-08-14 10:08:24 |
n |
|
|
[NOTES/ME-02011]-no title Node id: 5671page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
$\newcommand{\xbf}{\bf x}$
|
|
22-08-14 10:08:37 |
y |
|
|
[NOTES/ME-06001]- Application of Energy Conservation Law Node id: 5672page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
|
|
22-08-14 10:08:50 |
y |
|
|
[NOTES/ME-02010]-Rotation of Vector about an Arbitrary AxisNode id: 5670page |
|
22-08-14 10:08:35 |
y |
|
|
[NOTES/ME-06002]-Using graph of $V(x)$ to find motionNode id: 5675page |
|
22-08-14 09:08:58 |
n |
|
|
[NOTES/ME-06002b]-Using graph of $V(x)$ to find motionNode id: 5677page |
|
22-08-14 09:08:44 |
y |
|
|
[NOTES/ME-06001a]-Energy ConservationNode id: 5673page$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$ $\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$ $\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$ $\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
|
|
22-08-14 09:08:56 |
y |
|
|
[NOTES/ME-06001b]-Using energy conservation to reduce solution to quadraturesNode id: 5674page |
|
22-08-14 09:08:39 |
y |
|
|
[LSN/ME-12002] Motion in Spherically Symmetric PotentialsNode id: 4140page |
|
22-08-13 23:08:11 |
n |
|
|
Sample Video PageNode id: 5665video_page |
|
22-08-12 11:08:43 |
n |
|
|
Sample Video PageNode id: 5663video_page |
|
22-08-12 11:08:15 |
n |
|
|
[INDEX-TEACH&LEARN/ME] Newtonian MechanicsNode id: 5661page
TEACHING AND LEARNING
- Quick Review of prerequisites
- Kinematics in Different Coordinate Systems
- Newton's Laws
- Work and Energy
- Simple Harmonic Motion, Small Oscillations
- Noninertial Frames, Pseudo Forces
- Centre of Mass and Linear Momentum
- Rotational Motion
- Decomposition of Kinetic Energy and Angular Momentum
- Two Body Problem
- Multi particle System
- Kinematics of Rigid Body
- Rigid Body Dynamics
|
|
22-08-11 22:08:00 |
y |
|
|
[INDEX-TEACH&LEARN/ME] Newtonian MechanicsNode id: 5660page |
|
22-08-11 22:08:24 |
n |
|
|
[INDEX-TEACH&LEARN/EM] Electromagnetic TheoryNode id: 5659page
- Electric and Magnetic Fields
- Electrostatics
- Electric Potential and Electrostatic Energy
- Conductors in Electric field
- Maxwell's Equations in Dielectric
- Boundary Value Problems in Presence of Dielectric Media
- Magnetic Field
- Magnetostatics of Magnetic Media
- Electromagnetic Induction
- Maxwell's Equations in Time Varying Situations
- Electromagnetic Waves
- Relativistic Electrodynamics
- Potentials and Fields of a Moving Point Charge
- Radiation
|
|
22-08-11 22:08:52 |
y |
|
|
Check CodeNode id: 5638page$\newcommand{\mid}{|}$
$\newcommand{\label}[1]{}$
\begin{eqnarray} W_2&=&\frac{q_1q_2}{4\pi\epsilon_0\mid\bar{r_1}-\bar{r_2}\mid} \label{eq2}\\ W_3&=&\frac{q_1q_3}{4\pi\epsilon_0\mid\bar{r_1}-\bar{r_3}\mid}+\frac{q_2q_3}{ 4\pi\epsilon_0\mid\bar{r_3}-\bar{r_2}\mid} \label{eq3}\\ W_4&=&\frac{q_1q_4}{4\pi\epsilon_0\mid\bar{r_1}-\bar{r_4}\mid}+\frac{q_2q_4}{ 4\pi\epsilon_0\mid\bar{r_2}-\bar{r_4}\mid}+\frac{q_3q_4}{4\pi\epsilon_0\mid\bar{r_3 }-\bar{r_4}\mid} \label{eq4}\\ W_k&=&\frac{q_k}{4\pi\epsilon_0}\Sigma_{i=1}^{k-1}\frac{q_i}{\mid\bar{r_i}-\bar{ r_k}\mid} \label{eq5}\\ W&=&W_1+W_2+W_3+\ldots+W_n\\ \label{eq6} &=&\frac{1}{4\pi\epsilon_0}\sum_{k=1}^n\sum_{i=1}^{k-1}\frac{q_iq_k}{ \mid\bar{r_i}-\bar{r_k}\mid} \label{eq7}. \end{eqnarray}
|
|
22-08-11 16:08:13 |
n |