Notices
 

Browse & Filter

For page specific messages
For page author info
Enter a comma separated list of user names.
16 records found.
Operations
Title+Summary Name Datesort ascending

[QUE/QM-08015]

Node id: 2738page

 Assuming anticommutation relations      \[ [a_m, a_n]_+=0, \quad [a_m, a_n^\dagger]_+=\delta_{mn}, [a_m^\dagger,         a_n^\dagger]_+=0,  \]  Prove that the number operators \(N_n= a_n^\dagger a_n \) have eigenvalues 0 or 1 only.

kapoor's picture 22-04-11 17:04:33 n

[QUE/QM-08014]

Node id: 2739page

Rearrange the operator expression \(pqpq^2\) as sum of expressions of the form \(\sum_{m,n}c_{mn}q_np_m\) in which each term has all \(q\) operators on the left and all \(p\) operators on the right.

kapoor's picture 22-04-11 17:04:20 n

[QUE/QM-08013]

Node id: 2740page

Compute average of kinetic and potential energies     \[  \text{K.E.} = \frac{p^2}{2m},\qquad \text{P.E.}=       \frac{1}{2}m\omega^2x^2.\]   in the \(n^\text{th}\) excited state and show that the the average of total   energy is \(\frac{1}{2}\hbar \omega\).

kapoor's picture 22-04-11 17:04:13 n

[QUE/QM-08012]

Node id: 2741page

Using the properties of the ladder operators \(a, a^\dagger\) and the number operator \(N\), compute the average values of kinetic and potential energies for a harmonic oscillator in the \(n^\text{th}\) state \(|n\rangle\). Verify that their sum equals \((n + 1/2)\hbar\omega\).

kapoor's picture 22-04-11 17:04:54 n

[QUE/QM-08011]

Node id: 2742page

Prove the following commutation relation \begin{equation} [L_z, (L_+)^n] =  n \hbar (L_+)^n\end{equation}

kapoor's picture 22-04-11 17:04:18 n

[QUE/QM-08010]

Node id: 2743page

 Prove that if an operator commutes with any two of the three components of  angular momentum, then it commutes with the third component also.

kapoor's picture 22-04-11 17:04:35 n

[QUE/QM-08009]

Node id: 2744page

Compute average of kinetic and potential energies     \[  \text{K.E.} = \frac{p^2}{2m},\qquad \text{P.E.}=  \frac{1}{2}m\omega^2x^2.\]   in the \(n^\text{th}\) excited state and show that the the average of total   energy is \(\frac{1}{2}\hbar \omega\).

kapoor's picture 22-04-11 13:04:52 n

[QUE/QM-08008]

Node id: 2745page

For a harmonic oscillator in \(n^\text{th}\) excited state, compute \(\Delta q\) and \(\Delta p\) and show that           \[ \Delta q \Delta p =\big(n+\frac{1}{2}\big)\hbar.\]

kapoor's picture 22-04-11 13:04:21 n

[QUE/QM-08007]

Node id: 2746page

Let $Y_{\ell m}(\theta,\phi)$ denote the  simultaneous normalized eigenfunctions of $L^2$ and $L_z$ operators. Use the properties of the ladder operators, $L_\pm$, and construct the expressions for $Y_{lm}(\theta,\phi)$ for $l=2$ and $m=2,1,0,-1,-2$.

  1. Note that $Y_{\ell\ell}(\theta,\phi)$ satisfies\begin{eqnarray} L_z Y_{\ell\ell}(\theta,\phi) &=& \ell \hbar Y_{\ell\ell}(\theta, \phi)\nonumber\\ L_+ Y_{\ell\ell}(\theta,\phi) &=& 0. \nonumber\end{eqnarray}  Set up the above differential equations and solve them using separation of  variables and find (normalized) $Y_{2,2}$.
  2. Next apply $L_-$ repeatedly on \(Y_{2,2}\) and use $$L_- Y_{\ell, m} = \sqrt{\ell(\ell + 1)-m(m - 1)}\,  \hbar\,Y_{\ell(m-1)}$$ to successively construct $Y_{2,m}$ for other values $m =  1, 0,-1,-2$.
  3. Normalize your answers and compare them with known expressions of $Y_{2m}(\theta,\phi), m=-2,-1,0,1,2.$

Hint:
Use coordinate space representation  for angular mormentum operators.

 

kapoor's picture 22-04-11 13:04:17 n

[QUE/QM-08006]

Node id: 2747page
  1. What are the eigenvalues of $L^2 + \alpha L_x + \beta L_y + \gamma L_z$ for $\ell=2$. Give a full explanation for your answer.
  2. Construct matrices for $L_x,L_y, L_z$ for $\ell=1$ case and verify that $L^2$ is a multiple of identity.
kapoor's picture 22-04-11 13:04:55 n

[QUE/QM-08005]

Node id: 2748page

The the exact zero point energy of a system  several uncoupled oscillators, all having frequency \(\omega_0\), is given to be \(314.5 \hbar \omega_0\). What is the energy of first excited state?

kapoor's picture 22-04-11 13:04:13 n

[QUE/QM-08004]

Node id: 2749page

Let \(|n\rangle\) denote the \(n^\text{th}\) excited state of a harmonic  oscillator. Show that   \begin{equation*}       \langle n| x |m\rangle= \sqrt{\frac{\hbar}{2m\omega}}\Big(  \sqrt{n+1}\delta_{m, n+1} + \sqrt{n}\delta_{m, n-1} \Big)       \end{equation*}

kapoor's picture 22-04-11 13:04:41 n

[QUE/QM-08003]

Node id: 2750page

Compute average value \(\langle{n}|{q^4}|\rangle\) of \(q^4\) in the \(n^\text{th}\)   energy state of  harmonic oscillator.

kapoor's picture 22-04-11 13:04:13 n

[QUE/QM-08002]

Node id: 2751page

State if the combinations of $j,m$ values, in the table given below, are allowed or not. Complete the table by writing ALLOWED/NOT ALLOWED in the second column and specifying a reason in support of your answer selecting a reason from the list, $(R1)-(R5)$, given below. In case you do not find a valid or appropriate reason listed below, feel free to select option (R6) and specify your reason.\footnote{This question requires knowledge of angular momentum eigenvalues.}\\ {\bf{List of Possible Reasons:}}

  1. [(R1)]All values of $jm$ are allowed.
  2. [(R2)]Not allowed because $m$ is not an integer
  3. [(R3)]Allowed because all vales of $m$ in the range $-j$ to $+j$ are allowed
  4. [(R4)]Not allowed because $j,m$ must be an integers
  5. [(R5)]Not allowed because both $j,m$ must be integers, or half integers.
  6. [(R6)]Any other reason, please specify for each case separately
kapoor's picture 22-04-11 13:04:33 n

[QUE/QM-08001]

Node id: 2752page

The potential energy of two protons in hydrogen molecule ion in a model is given below \begin{eqnarray}
   V(x) &=& |E_1| f(x) \\
   f(x) &=& - 1 + \frac{2}{x}\left[ \frac{(1-(2/3)x^2) e^{-x} + (1+x) e^{-2x}}
   {1+(1+x+x^2/3) e^{-x} }\right], \qquad x=R/a
\end{eqnarray}
$E_1= 13.6 \text{ eV}$ is the ground state energy of H atom and $a$ is the Bohr  radius $\hbar^2/me^2$. The graph of this  function $f(x)$ is reproduced below. Find numerical values of the bond length in ${A^o}$, the zero point energy and spacing of vibrational spectrum, both energies in electron volts.

NoteThe expression for $V(x)$ is taken from an approximate variational calculation of energy of the H molecule ion in Born Oppenheimer approximation.

kapoor's picture 22-04-11 13:04:49 n

[QUE/QM-08001]

Node id: 2753page

The potential energy of two protons in hydrogen molecule ion in a model is given below

\begin{eqnarray}
   V(x) &=& |E_1| f(x) \\
   f(x) &=& - 1 + \frac{2}{x}\left[ \frac{(1-(2/3)x^2) e^{-x} + (1+x) e^{-2x}}
   {1+(1+x+x^2/3) e^{-x} }\right], \qquad x=R/a
\end{eqnarray}
$E_1= 13.6 \text{ eV}$ is the ground state energy of H atom and $a$ is the Bohr  radius $\hbar^2/me^2$. The graph of this  function $f(x)$ is reproduced below. Find numerical values of the bond length in ${A^o}$, the zero point energy and spacing of vibrational spectrum, both energies in electron volts.

NoteThe expression for $V(x)$ is taken from an approximate variational calculation of energy of the H molecule ion in Born Oppenheimer approximation.

kapoor's picture 22-04-06 16:04:34 n
 
X