Notices
 

[NOTES/QM-13010] Dirac Delta Function Potential -Direct integration of the Schr\"{o}dinger equation

For page specific messages
For page author info

Category: 

The energy eigenfunctions and eigenvalues for a particle in delta function potential are derived. It is found that, for an attractive delta function potential there is only one bound state.

The Initial set up 

We integrate the Schr\"{o}dinger equation to derive boundary condition on the derivative of the eigenfunction at $x=0$. We rewrite the Schr\"{o}dinger equation for the delta function potential \begin{equation} -\frac{\hbar^2}{2m} \DD[u(x)]{x} - g \delta(x) u(x) = E u(x) \end{equation} in the form \begin{equation} \DD[u(x)]{x} + \frac{2mg}{\hbar^2} \delta(x) u(x) = \frac{2mE}{\hbar^2} u(x). \end{equation}

General  solution of the eigenvalue equation

We want to solve for the bound state energy, hence $E$ is negative and we set $E=-|E|$ and rewrite the Schr\"{o}dinger equation as \begin{equation} \DD[u(x)]{x} +\frac{2mg}{\hbar^2} u(x) -\alpha^2 u(x) =0, \label{eq01} \end{equation} where $\alpha^2 = \frac{2m|E|}{\hbar^2}$. Since $\delta(x)$ is zero for $x\ne 0$, the Schr\"{o}dinger equation for $x<0$ and $x>0$, both, takes the form \begin{equation} \DD[u(x)]{x} -\alpha^2u(x) =0 \end{equation} which has two independent solutions $e^{\alpha x}$ and $e^{-\alpha x}$ and we write the most general solution as \begin{eqnarray} u(x) = \begin{cases} u_1(x) = A \exp(\alpha x) + B \exp(-\alpha x)& x < 0 \\ u_2(x) = C \exp(\alpha x) + D \exp(-\alpha x) & x> 0 \end{cases} \end{eqnarray}

Apply boundary condition at infinity

Using the boundary condition $u(x) \to 0 $ as $x\to\pm \infty$ we get $B=C=0$ and the solution for the eigenfunction becomes \begin{eqnarray} u(x) = \begin{cases} u_1(x) = A \exp(\alpha x) & x < 0 \\ u_2(x) = D \exp(-\alpha x) & x> 0 \end{cases} \end{eqnarray} Demanding that the wave function be continuous at $x=0$ ( $u_1(0)=u_2(0)$) gives $D=A$ and we get \begin{equation} u(x) = \begin{cases} u_1(x) = A \exp(\alpha x) & x < 0 \\ u_2(x) = A \exp(-\alpha x) & x> 0 \end{cases} \label{eq02} \end{equation}

Matching condition at \(x=0\)

We integrate the Schr\"{o}dinger equation, \eqref{eq01}, from $-\epsilon$ to $\epsilon$ and take the limit $\epsilon \to 0$. \begin{eqnarray} \int_{-\epsilon}^{\epsilon} \DD[u]{x}\, dx + \frac{mg}{\hbar^2} \int_{-\epsilon}^{\epsilon} \delta(x) u(x) \,dx - \alpha^2 \int_{-\epsilon}^{\epsilon} u(x) \, dx &=& 0.\\ \text{or} \qquad \dd[u]{x}\Big|^\epsilon_{-\epsilon} + \frac{2mg}{\hbar^2} u(0) - \alpha^2 \int_{-\epsilon}^{\epsilon} u(x) \, dx &=& 0. \end{eqnarray} The solution $u(x)$ is continuous at $x=0$, hence in the limit $\epsilon \to 0$ the region of integration shrinks to zero and the last terms vanishes and we get the boundary condition on the first derivative at $x=0$ as \begin{equation} \boxed{\dd[u_2]{x}\Big|_{x=\epsilon} - \dd[u_1]{x}\Big|_{x=-\epsilon} + \frac{2mg}{\hbar^2} u(0) = 0.} \label{eq03} \end{equation} Now using the explicit solution, \eqref{eq02}, we get

\begin{equation} u(0)=u_1(0)=u_2(0)=A \end{equation} and \begin{eqnarray} \dd[u]{x}\Big|_{x=\epsilon} &=& \dd[u_2]{x}\Big|_{x=\epsilon}=-A \alpha e^{-\alpha\epsilon},\\ \dd[u]{x}\Big|_{x=-\epsilon} &=& \dd[u_1]{x}\Big|_{x=-\epsilon}=A \alpha e^{-\alpha\epsilon}. \end{eqnarray} The boundary condition, \eqref{eq03}, in the limit $\epsilon \to 0$ becomes \begin{eqnarray} -A\alpha e^{-\alpha \epsilon} -A \alpha e^{\alpha \epsilon} + \frac{2mg}{\hbar^2} A =0 \\ \frac{2mg}{\hbar^2}= 2\alpha \Rightarrow \frac{m^2g^2}{\hbar^4} = \alpha^2 = \frac{2m|E|}{\hbar^2}. \end{eqnarray}

The final answer

Thus we get the bound state energy as \begin{equation} |E|= \frac{mg^2}{2\hbar^2} \Longrightarrow E=-|E|=-\frac{mg^2}{2\hbar^2}.\label{eq04} \end{equation} The final form of the energy eigenfunction \begin{equation} u(x) = A \exp(-\alpha |x|), \end{equation} after normalization \begin{equation} \int_{-\infty}^\infty |u(x)|^2 \, dx = 1 \Rightarrow 2 \int_0^\infty |A|^2 \exp(-2\alpha x)\, dx =1, \end{equation} is given by \begin{equation} u(x) = \alpha^{-1/2} e^{-\alpha |x|},\qquad \alpha = \frac{2mg}{\hbar^2}. \end{equation} and the corresponding energy is given by \eqref{eq04}.

Exclude node summary : 

n

4727: Diamond Point, 4909: QM-HOME-I

700
0
 
X