
Notes for Lectures on Quantum Mechanics *

Coordinate Representation

A. K. Kapoor
http://0space.org/users/kapoor

akkapoor@cmi.ac.in; akkhcu@gmail.com

Contents

1 A useful result . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Coordinate representation — One dimension . . . . . . . . . 2
3 Action of position and momentum operators . . . . . . . . . . 3
4 Hamiltonian in coordinate representation . . . . . . . . . . . 4
5 Wave function as position probability density . . . . . . . . . 4
6 Several degrees of freedom . . . . . . . . . . . . . . . . . . . . 5

1 A useful result

The canonical commutation relation [x̂, p̂] = i~ can be used to show that GBox-01

if x0 is an eigenvalue of x̂, x0 + a, a ∈ R, is also an eigenvalue. This is most

easily seen by making use of the identity GBox-02

x̂ exp(−iap̂/~) = exp(−iap̂/~)(x̂+ a). (1)

here a is a real number. To see this note that U(a) ≡ exp(−iap̂/~) is a

unitary operator. If |x0〉 is an eigenvector of x̂ with eigenvalue x0, U(a)|x0〉
is an eigenvector of x̂ with eigenvalue x0 + a. Using Eq.(1) we get

x̂
(
U(a)|x0〉

)
= exp(−iap̂/~)(x̂+ a)ketx0, (2)

= (x0 + a)
(
U(a)|x0〉

)
. (3)
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This shows that (x0 + a) is an eigenvalue of x̂ with U(a)|x0〉 as the eigen-

vector. Since a is any real number, all real numbers are eigenvalues of the

position operator x̂. A similar argument shows that all real values are al-

lowed as eigenvalues of the momentum operator p̂.

2 Coordinate representation — One dimension

We shall first consider a particle in one dimension. To set up the coordinate

representation, we use the eigenvectors of position operator x̂ as o.n. basis.

We have seen that the eigenvalues of x̂ are all real values in range (−∞,∞).

Let x be one such eigenvalue and |x〉 be the corresponding eigenvector, i.e.,

x̂|x〉 = x|x〉. (4)

The orthogonality property of the eigenvectors now assumes the form

〈x′′|x′〉 = δ(x′′ − x′), (5)

and the completeness relation
∑

n |n〉〈n| = Î takes the form∫ ∞
−∞
|x〉〈x| dx = Î . (6)

where Î denotes the identity operator. Everywhere the sum
∑

n over all

eigenvalues is replaced by integration,
∫
dx, as the eigenvalues are now con-

tinuous. This choice of the eigenvectors {|x〉} as a basis leads to the coor-

dinate representation or the position representation, also known as the

Schrödinger representation.

Thus an expansion of abstract vector |ψ〉 in the basis
{
|x〉
}

becomes

|ψ〉 =

∫
dx|x〉〈x|ψ〉, (7)

and the abstract vector |ψ〉 is represented by the numbers 〈x|ψ〉, with x

having values in real numbers. Instead of arranging all the components of

|ψ〉 in form of a column, we regard them as values of a function of x:

〈x|ψ〉 = ψ(x). (8)

- Due to the fact that the eigenvalues of x are continuous, it is not

meaningful to ask for probability that the position has a single value

x0; instead we must ask for probability position has a value in the

specified range, such as x and x+ dx.
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The third postulate tells us that this probability is given by

|〈x|ψ〉|2dx = |ψ(x)|2dx. (9)

Thus the function ψ(x), to be called the wave function, gives the proba-

bility density of position. The Parseval relation GBox-03

〈ψ|ψ〉 =

∫ ∞
−∞
|ψ(x)|2 dx (10)

ensures that, for normalized state vector |ψ〉, the total probability will be

one.

Every operator T̂ is represented as a infinite dimensional matrix with

continuous row and column indices
{

(T)x,x′ = 〈x|T̂ |x′〉
}

. The action of

operator T̂ on wave function ψ(x) is then given by

T̂ψ(x) =
∑
x′

(T)x,x′ ψ(x′) =

∫ ∞
−∞
〈x|T̂ |x′〉ψ(x′) dx′. (11)

The operator x̂ will be represented by an infinite dimensional diagonal matrix

having rows and columns labelled by continuous indices x′, x′′ and the matrix

elements of x are

〈x′|x̂|x′′〉 = x′δ(x′′ − x′). (12)

Using the canonical commutation relation, [x̂, p̂] = i~, the matrix elements

of the momentum operator can be worked out and is given by GBox-04

〈x′|p̂|x′′〉 = −i~ d

dx′
δ(x′′ − x′). (13)

3 Action of position and momentum operators

The action of position and momentum operators is given as matrix multipli-

cation by considering these operators as matrices with continuous row and

column indices:

x̂ψ(x) =

∫ ∞
−∞
〈x|x̂|x′〉ψ(x′) dx′ (14)

=

∫ ∞
−∞

xδ(x− x′)ψ(x′) dx′ (15)

= xψ(x) (16)
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and

p̂ψ(x) =

∫ ∞
−∞
〈x|p̂|x′〉ψ(x′) dx′ (17)

=

∫ ∞
−∞
−i~δ(x− x′)ψ(x′) dx′ (18)

= −i~dψ(x)

dx
. (19)

Thus, in the position representation we have p̂→ −i~ d
dx . An operator corre-

sponding to a dynamical variable can be obtained by making a replacement

x̂→ x, p̂→ −i~ d
dx
. (20)

4 Hamiltonian in coordinate representation

The most important variable for a system is the Hamiltonian

H =
p2

2m
+ V (x). (21)

and the corresponding operator is

Ĥ =
p̂

2m
+ V (x̂) = − ~2

2m

d2

dx2
+ V (x). (22)

5 Wave function as position probability density

Let |ψ〉 denote the state vector of a particle and ψ(x) = 〈x|ψ〉 be the cor-

responding wave function. We now come to the physical interpretation of

the coordinate space wave function ψ(x). Note that ψ(x) is the coefficient

of |x〉 in the expansion of the state vector |ψ〉:

|ψ〉 =

∫
|x〉〈x|ψ〉 dx =

∫
ψ(x)|x〉 dx. (23)

The third postulate tells us that the expansion coefficient will give the prob-

ability amplitude for position and the the absolute square |ψ(x)|2 gives the

probability density for position. Thus the probability of finding position in

the range x, x+dx is |ψ(x)|2dx. The integral
∫ b
a |ψ(x)|2 dx is the probability

that the particle will be found in the interval (a, b).
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6 Several degrees of freedom

Generalization to a particle in three dimensions is straightforward. The basis

vectors |~r〉 in this case are simultaneous eigenvectors of position operators

x̂, ŷ, ẑ:

x̂|~r〉 = x|~r〉, ŷ|~r〉 = y|~r〉, ẑ|~r〉 = z|~r〉. (24)

The orthogonality and completeness relations assume the form

〈~r ′′|~r ′〉 = δ(~r ′′ − ~r ′),
∫
d3~r |~r〉〈~r| = Î . (25)

Expansion of an arbitrary |ψ〉 in the basis |~r〉 assumes the form

|ψ〉 =

∫
|~r〉 〈~r|ψ〉d3r. (26)

We call the function 〈~r|ψ〉 the wave function and also denote it by ψ(~r). The

absolute square of wave function gives the probability density; |ψ(~r)|2dV is

the probability density for the particle to be a small volume dV at position

~r. The corresponding probability for a a particle to be in a finite volume V

is obtained integrating over the volume V and is given by

y

V

|〈ψ|~r〉|2 d3r =
y

V

|ψ(~r)|2 d3r. (27)

The action of position operators ~̂r is to multiply by ~r and that of momentum

operators is given by ~̂p→ −i~∇. Thus

~̂r ψ(~r) = ~r ψ(~r), ~̂p ψ(~r) = −i~∇ψ(~r). (28)
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