A particle of mass \(m\) moves in a two dimensional potential\(V(x,y)=\frac{1}{2}\big(4x^2+ y^2\big)\) and is in an energy eigen state. Following four different un-normalized wave functions are given
- \(\psi_1(x) = y \exp\big(-\frac{m\omega}{\hbar}(2x^2 + y^2) \big)\)
- \(\psi_1(x) = xy \exp\big(-\frac{m\omega}{\hbar}(2x^2 + y^2) \big)\)
- \(\psi_1(x) = x \exp\big(-\frac{m\omega}{\hbar}(x^2 + y^2) \big)\)
- \(\psi_1(x) = y \exp\big(-\frac{m\omega}{\hbar}(2x^2 + y^2) \big)\)
- \(\psi_1(x) = \exp\big(-\frac{m\omega}{\hbar}(x^2 + 2y^2) \big)\)
- \(\psi_1(x) = y \exp\big(-\frac{m\omega}{\hbar}(2x^2 + y^2) \big)\)
For each of the above functions find if
[1] it is the eigen function of the energy, and
[2]if it is, find the corresponding energy.
Exclude node summary :
y
Exclude node links:
0
4727: Diamond Point, 4909: QM-HOME-I
0