A particle of mass \(m\) moves in a two dimensional potential\(V(x,y)=\frac{1}{2}\big(4x^2+ y^2\big)\) and is in an energy eigen state of energy \(E=\frac{5}{2}\hbar\omega.\) The corresponding un-normalized eigen function is
- \(\psi_1(x) = y \exp\big(-\frac{m\omega}{\hbar}(2x^2 + y^2) \big)\) \Label{ANS}
- \(\psi_1(x) = xy \exp\big(-\frac{m\omega}{\hbar}(2x^2 + y^ 2) \big)\)
- \(\psi_1(x) = x \exp\big(-\frac{m\omega}{\hbar}(2x^2 + y^ 2) \big)\)
- \(\psi_1(x) = y \exp\big(-\frac{m\omega}{\hbar}(x^2 + y^2) \big)\)
Answer (a)
Exclude node summary :
y
Exclude node links:
0