$\newcommand{\DD}[2][]{\frac{d^2 #1}{d^2 #2}}$
$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}$
$\newcommand{\PP}[2][]{\frac{\partial^2 #1}{\partial #2^2}}$
$\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$
$\newcommand{\pp}[2][]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\average}[2]{\langle#1|#2|#1\rangle}$
$\newcommand{\ket}[1]{\langle #1\rangle}$
qm-lec-17009
Using tables of Clebsch Gordon Coefficients
We shall now take up an example of constructing the states $\ket{JM}$ using the tables of Clebsch Gordon coefficients. There are two tables of Clebsch Gordon coefficients given at the end. Note that the first table is for $j_2=\frac{1}{2}$ and the second one for $j_2=1$. For $j_2=\frac{1}{2}$, the two columns correspond to the two values, $\frac{1}{2}$ and $-\frac{1}{2}$, of $m_2$. The two rows correspond to the two possible values of total angular momentum $J=j_1+ \frac{1}{2}$ and $J=j_1-\frac{1}{2}$. Similarly, the second table, corresponding to $j_2=1$, has three columns for the three values $m_2=1,0,-1$ and the three rows correspond to three allowed values $J=j_1+1,j_1,j_1-1$ of total angular momentum.
\input{qm-ymp-17001}
\subsection{Tables of Clebsch Gordon Coefficients}
\input{cg.tex}
Exclude node summary :
Exclude node links:
4727: Diamond Point, 4909: QM-HOME-I