Notices
 

[NOTES/QFT-04008] Potential Scattering Cross Section

For page specific messages
For page author info

qft-lsn-04008

I Session Overview

To compute scattering cross section for particle;
Second quantized Schrodinger field in
External field (potential) \(V(x)\)
To learn application of first order perturbation theory. 


 II Recall formulae needed


 III Solution

 Scattering-external-source-Schrodinger-field


V Useful Tips

It will be seen that squaring gives
\[(2\pi) \delta(\omega_{fi}) \stackrel{\text{square}}{\longrightarrow}(2\pi)^2 \delta(0) \delta(\omega_{fi})\] and computing transition probability per unit volume amounts to dropping the factor \((2\pi) \delta(0)\): \[\boxed{(2\pi) \delta(\omega_{fi}) \stackrel{\underbrace{\text{square}}}{\longrightarrow} (2\pi)^2 \delta(\omega_{fi}) \delta(\omega_{fi})= (2\pi)^2 \delta(0) \delta(\omega_{fi}) \stackrel{\underbrace{\text{per unit time}}}{\longrightarrow}(2\pi) \delta(\omega_{fi})}\]

This replacement can be intuitively understood as follows
\begin{eqnarray} (2\pi) \delta(\omega) &=& \int _{-\infty}^{\infty} e^{i\omega t} \,\, dt\\ &=& \lim_{T\to\infty} \int_{T/2}^{T/2} e^{i\omega t} \,\, dt\\ (2\pi) \delta(0) &=& \lim_{T\to\infty} \int_{T/2}^{T/2} e^{i\omega t} \,\, dt\big|_{\omega=0}\\ \int_{T/2}^{T/2} e^{i\omega t} \,\, dt\big|_{\omega=0}&=& \int_{T/2}^{T/2} \,dt\\ &=& T. \end{eqnarray}
Hence taking per unit time amounts to replacement
\[ (2\pi)\delta(\omega)\big|_{\omega=0} \to 1\] }
The above sequence of statement cannot be
justified, a complete argument has however been given earlier.  


 

Exclude node summary : 

n
0
 
X