Problem Solving Session in Quantum Field Theory

Potential Scattering Cross Section

IInd Quantized Schrodinger Field

A. K. Kapoor http://0space.org/users/kapoor akkapoor@cmi.ac.in; akkhcu@gmail.com

Contents

§ 1	Session Overview	1
§ 2	Statement of the Problem	2
§ 3	Recall formulae needed	3
§ 4	Useful Tips	8

§1 Session Overview

Goals: To compute scattering cross section for particle; Second quantized Schrodinger field in external field (potential) V(x).

To learn application of first order perturbation theory.

Skills needed The skill to compute matrix elements of product of field operators between Fock states; Properties of normal product

§2 Statement of the Problem

Assume that the interaction of Schrodinger field with an external source is given by

$$\mathcal{H}'(t) = \int d\mathbf{x} \psi^{\dagger}(\mathbf{x}, t) V(\mathbf{x}) \psi(\mathbf{x}, t)$$

Show that differential scattering cross section is give by

$$\sigma(\theta) = |f(\theta, \phi)|^2$$

where f is the scattering amplitude

$$f(\theta, \phi) = \frac{m}{2\pi\hbar^2} \int d\mathbf{x} e^{i(\mathbf{k}_i - \mathbf{k}_f) \cdot \mathbf{x}} V(\mathbf{x})$$

§3 Recall formulae needed

Expansion of fields

In all the examples here we work in the interaction picture. The field operator will be expanded as

$$\psi(\mathbf{x},t) = \sum_{n} a_n u_n(\mathbf{x},t) \tag{1}$$

where $\{u_n(\mathbf{x},t), n=1,2,..\}$ are stationary solutions for Hamiltonian H_0

$$u_n(\mathbf{x}, t) = u_n(\mathbf{x})e^{-iE_n t/\hbar} \tag{2}$$

First order perturbation result

Transition amplitude
$$c_{fi} = -\frac{1}{i\hbar} \int_{t_1}^{t_2} \langle f|H_I'(t)|i\rangle dt$$

Some Commutators

$$[a, \psi^{\dagger}(x, t)] = u_{\mathbf{k}}^{*}(\mathbf{x}) \Rightarrow a\psi^{\dagger}(\mathbf{x}) = u_{\mathbf{k}}^{*}(\mathbf{x}) + \psi^{\dagger}(\mathbf{x})a$$
 (3)

$$[\psi(x,t), a^{\dagger}] = u_{\mathbf{k}}(\mathbf{x}) \Rightarrow \psi(\mathbf{x})a^{\dagger} = u_{\mathbf{k}}(\mathbf{x}) + a^{\dagger}\psi(\mathbf{x})$$
 (4)

The initial and final states

Initial and final states have one particle. Corresponding wave functions are

$$u_i(\mathbf{x}) = \frac{e^{\mathbf{k}_i \dot{\mathbf{x}}}}{(2\pi)^{3/2}}, \quad u_f(\mathbf{x}) = \frac{e^{\mathbf{k}_f \dot{\mathbf{x}}}}{(2\pi)^{3/2}}.$$

The final states are the states with energy E_f and momentum \mathbf{k}_f , with $E_f = \frac{\hbar^2 k_f^2}{2m}$, and momentum vector in the solid angle $d\Omega$.

Cross section

The differential cross section for potential scattering is given by

$$\sigma(\theta, \phi)d\Omega = \frac{w_{fi}}{J_{\text{inc}}} \tag{5}$$

where $w_{\rm fi}$ is the transition probability per unit time for scattering into solid angle $d\Omega$.

 \vec{J}_{inc} is calculated from probability current density for wave function $u_{\mathbf{k}i}(x)$ and is given by

$$\vec{J}_{\text{inc}} = \frac{1}{(2\pi)^{3/2}} \frac{\hbar \mathbf{k}_i}{m}.$$
 (6)

Setting up the problem

Transition amplitude

The transition amplitude is given by

$$c_{\rm fi} = \frac{1}{i\hbar} \int_0^t \langle f|H'|i\rangle d\mathbf{x} \tag{7}$$

$$= \frac{1}{i\hbar} \langle f|H'|i\rangle \int_0^t e^{i(E_f - E_i)t/\hbar} dt \tag{8}$$

$$= \frac{1}{i\hbar} \langle f|H'|i\rangle \frac{2\sin(\omega_{fi}t/2)}{\omega_{fi}}^{i\omega_{fi}t/2} \qquad \text{Verify}$$
 (9)

where
$$\omega_{fi} = \frac{E_f - E_i}{\hbar}$$
.

Probability per unit time

The probability is given by $|c_{\rm f}|^2$, and the probability per unit time is

$$w_{\rm fi} = \frac{d}{dt} \left[\frac{1}{\hbar^2} \left| \langle f | V(\mathbf{x}) | i \rangle \right|^2 \frac{4 \sin^2(\omega_{fi} t/2)}{\omega_{fi}^2} \right]$$
 (10)

$$= \frac{1}{\hbar^2} \left| \langle f|V(\mathbf{x})|i\rangle \right|^2 \times 2 \frac{\sin \omega_{fi} t}{\omega_{fi}} \tag{11}$$

$$= \frac{2}{\hbar^2} \frac{\sin \omega_{fi} t}{\omega_{fi}} \times |V_{fi}|^2 \tag{12}$$

where we V_{fi} is the matrix element

$$V_f i = \langle f | V(\mathbf{x}) | i \rangle = \frac{1}{(2\pi)^3} \int d\mathbf{x} e^{i(\mathbf{k}_i - \mathbf{k}_f) \cdot \mathbf{x}} V(\mathbf{x}) d\mathbf{x}.$$
 (13)

Taking the limit $t \to \infty$, and using

$$\lim_{t \to \infty} \frac{\sin \omega_{fi} t}{\omega_{fi}} = \pi \delta(\omega_{fi}) \tag{14}$$

we get the transition probability per unit time equal to

$$w_{\rm fi} = \frac{2\pi}{\hbar} |V_{fi}|^2 \delta(\omega_{fi}). \tag{15}$$

Sum over final states

For differential cross section the final states of interest are those having final momentum direction in solid angle $d\omega$, summing over the final states will be carried over as

$$\sum_{\text{final}}(.) = d\Omega \int k^2 dk(.)$$
 (16)

and k_f integral can be carried out using Dirac delta function

$$\delta(\omega_{fi}) = \delta\left(\frac{E_f - E_i}{\hbar}\right) = \hbar\delta(E_f - E_i).$$

To do this, change the integration variable to $E_f = \frac{\hbar^2 k_f^2}{2m}$ and make use of

$$dE_f = \frac{\hbar^2 k_f d\mathbf{k}_f}{m} \to k_f^2 dk_f = dE_f \frac{mk_f}{\hbar^2}$$

Hence we have

$$\sum_{\text{final}} (.) = d\Omega \int k^2 dk \delta(E_f - E_i) |V_{fi}|^2$$
(17)

(18)

The delta function $\delta(E_f-E_i)$ requires $E_f=E_i \rightarrow k_f=k_i$

Prob per unit time for momentum in range
$$d\Omega$$
 (19)

$$= \frac{2\pi}{\hbar} \sum_{\text{final state}} w_{\text{fi}} \tag{20}$$

$$= \frac{2\pi}{\hbar} d\Omega \int k_f^2 dk_f \delta\omega_{fi} \times |V_{fi}|^2 \tag{21}$$

$$= \frac{2\pi}{\hbar} d\Omega \int dE_f \frac{m}{\hbar^2} k_i^2 dk_f \delta\omega_{fi} |V_{fi}|^2$$
 (22)

$$= \frac{2\pi}{\hbar} (d\Omega) \left(\frac{mk_i}{\hbar^2}\right) |V_{fi}|^2 \tag{23}$$

Now compute cross section

By definition of differential cross section, the expression (20) is equal to $|J_{\text{inc}}|\sigma(\theta,\phi)d\Omega$. Using $|J_{\text{inc}}| = \frac{\hbar k_i}{(2\pi)^3 m}$ gives us

$$\sigma(\theta, \phi) = \frac{1}{|J_{\text{inc}}|} \times \frac{2\pi}{\hbar} \sum_{\text{final state}} w_{\text{fi}}$$
 (24)

$$= \frac{(2\pi)^3 m}{\hbar k_i} \times \frac{2\pi}{\hbar} \times \left(\frac{mk_i}{\hbar^2}\right) \times |V_{fi}|^2 \tag{25}$$

$$= \left(\frac{m}{2\pi\hbar^2}\right)^2 \left| \int d\mathbf{x} e^{i(\mathbf{k}_i - \mathbf{k}_f) \cdot \mathbf{x}} V(\mathbf{x}) d\mathbf{x} \right|^2$$
 (26)

This agrees with the Born approximation result from time independent approach to potential scattering in quantum mechanics.

§4 Useful Tips

It will be seen that squaring gives

$$(2\pi)\delta(\omega_{fi}) \xrightarrow{\text{square}} (2\pi)^2\delta(0)\delta(\omega_{fi})$$

and computing transition probability per unit volume amounts to dropping the factor $(2\pi)\delta(0)$:

$$(2\pi)\delta(\omega_{fi}) \xrightarrow{\text{square}} (2\pi)^2 \delta(\omega_{fi})\delta(\omega_{fi}) = (2\pi)^2 \delta(0)\delta(\omega_{fi}) \xrightarrow{\text{per unit time}} (2\pi)\delta(\omega_{fi})$$

This replacement can be intuitively understood as follows

$$(2\pi)\delta(\omega) = \int_{-\infty}^{\infty} e^{i\omega t} dt$$
 (27)

$$= \lim_{T \to \infty} \int_{T/2}^{T/2} e^{i\omega t} dt \tag{28}$$

$$(2\pi)\delta(0) = \lim_{T \to \infty} \int_{T/2}^{T/2} e^{i\omega t} dt \big|_{\omega=0}$$
 (29)

$$\int_{T/2}^{T/2} e^{i\omega t} dt \big|_{\omega=0} = \int_{T/2}^{T/2} dt$$

$$= T.$$
(30)

Hence taking per unit time amounts to replacement

$$(2\pi)\delta(\omega)\big|_{\omega=0} \to 1$$

The above sequence of statement cannot be justified, a complete argument has however been given earlier.