Notices
 

Browse & Filter

For page specific messages
For page author info
Enter a comma separated list of user names.
13 records found.
Operations
Title+Summary Name Datesort ascending

[QUE/QFT-04014] QFT-PROBLEM

Node id: 4027page



For the classical Schrodinger field\(\psi(x)\) calculate the following Poisson brackets.

  • \(\{N, \psi\}_\text{PB}\) 
  • \(\{ \psi, \Hca\}_\text{PB}\)
  • \(\{\Pca, \psi\}_\text{PB}\) 
  • \(\{\Pca, \Hca\}_\text{PB}\)

where \(N,\Pca\) and \(\Hca\), respectively, are the momentum and the Hamiltonian of the Schrodinger field. \begin{eqnarray}\nonumber N &=&\int \psi^*(x)\psi(x)\, dx; \qquad \Pca = -i\hbar\int\, dx \psi^*(x) \nabla \psi(x)\\\nonumber \Hca &=& \int \Big\{ \frac{\hbar^2}{2m}(\nabla\psi(x))^*(\nabla \psi(x)) + \psi^*(x)V(x)\psi(x)\Big\}. \end{eqnarray}

shivahcu's picture 22-02-05 22:02:41 n

[QUE/QFT-04013] QFT-PROBLEM

Node id: 4026page




Using the Heisenberg equation of motion for the Schrodinger field with Lagrangian density \[ \Lsc = i\hbar\psi^\dagger(\mathbf x,t)\pp[\psi(\mathbf x,t)]{t} - \frac{\hbar^2}{2m} (\nabla\psi^\dagger(\mathbf x))(\nabla\psi(\mathbf x)) - \psi^\dagger(\mathbf x,t)V(\mathbf x)\psi(\mathbf x,t) \] compute \(\dd[\rho]{t}\), where \(\rho=\psi^\dagger(\mathbf x)\psi(\mathbf x)\). Hence prove the equation of continuity \[\dd[\rho]{t} + \nabla\cdot \mathbf J =0\] where \(J\) is the probability current density \[\mathbf J = \frac{\hbar}{2im}[\psi^\dagger(\mathbf x)\big(\nabla\psi(\mathbf x)\big)- \big(\nabla\psi^\dagger(\mathbf x)\big)\psi(\mathbf x)].\] How does the interpretation of \(\rho\) and \(\mathbf J\) differ in the second quantized theory from that in Schrodinger quantum mechanics?

shivahcu's picture 22-02-05 09:02:09 n

[QUE/QFT-04012] QFT-PROBLEM

Node id: 4025page

$\newcommand{\Lsc}{\mathscr L}$

Consider electron proton scattering to be computed in the second quantized Schrodinger theory. The electrostatic interaction can be modeled as \[ V(\mathbf x_1-\mathbf x_2) = -(Ze^2)\int d\mathbf x_1\,d\mathbf x_2 \frac{\rho_e(\mathbf x_1) \rho_p(\mathbf x_2)}{|\mathbf x_1- \mathbf x_2|}\] This interaction suggests the following interaction term in the second quantized Schrodinger theory. \[ \Lsc_\text{int}=\int d\mathbf x_1d\mathbf x_2 \psi^*(\mathbf x_1)\psi(\mathbf x_1) V(\mathbf x_1-\mathbf x_2)\phi^*(\mathbf x_2)\phi(\mathbf x_2) \] where \(\psi ,\phi\) denote the electron and proton fields respectively, and \[V(\mathbf x_1-\mathbf x_2)=-\frac{(Ze^2)}{|\mathbf x_1- \mathbf x_2|}.\] Compute the electron proton scattering cross section in the center of mass frame. Use Yukawa potential \(V(\mathbf x_1-\mathbf x_2)=-V_0\dfrac{ e^{-\mu|\mathbf x_1-\mathbf x_2|}}{|\mathbf x_1- \mathbf x_2|}\) in \(\Lsc_\text{int}\). Show that in the limit \(\mu\to0\), the differential cross section coincides with the Rutherford scattering cross section.

shivahcu's picture 22-02-05 09:02:12 n

[QUE/QFT-04011 QFT-PROBLEM

Node id: 4024page

$\newcommand{\matrixelement}[3]{\langle#1|#2|#3\rangle}\newcommand{\dd}[2][]{\frac{d#1}{d#2}}$

Expand \(\psi(x)\) in terms of plane waves as \[ \psi(\mathbf x) = \frac{1}{(2\pi)^{3/2}}\int d\mathbf k \exp(i\mathbf k\mathbf x) a(\mathbf k)\]

  1. Working in in one dimension, show that \[[a(\mathbf k), \psi^\dagger(\mathbf x)] = \frac{e^{-i\mathbf k\mathbf x}}{(2\pi)^{3/2}}\qquad \text{and} \qquad [a^\dagger(\mathbf k), \psi(\mathbf x)]= -\frac{e^{i\mathbf k\mathbf x}}{(2\pi)^{3/2}}\]
  2. Express the free Hamiltonian \begin{equation} H = \frac{\hbar^2}{2m}\int d\mathbf x (\nabla \psi^\dagger(\mathbf x) )(\nabla \psi(\mathbf x)) \end{equation} in terms of number operators and verify that \begin{equation} H = \int d\mathbf k \Big(\frac{\hbar^2\mathbf k^2}{2m}\Big) a(\mathbf k)^\dagger a(\mathbf k) \end{equation}
  3. Given interaction Hamiltonian \[H{'} = \int d\mathbf x \psi^\dagger(\mathbf x) V(\mathbf x) \psi(\mathbf x)\]. Compute the matrix element \(\matrixelement{\mathbf k_f}{H{'}}{\mathbf k_i}\) and verify that \[ \matrixelement{\mathbf k_f}{H{'}}{\mathbf k_i} = \frac{1}{(2\pi)^{3/2}} \int\,d\mathbf q \exp(i\mathbf q\mathbf x) V(\mathbf x) \] where \(\mathbf q=\mathbf k_f-\mathbf k_i\).
shivahcu's picture 22-02-05 09:02:13 n

[QUE/QFT-04010] QFT-PROBLEM

Node id: 4023page

Use the expansion of Schrodinger field \(\psi(x,t)\) in terms of plane waves \[\psi(\mathbf x,t) =\frac{1}{(2\pi)^{3/2}} \int d\mathbf k \exp(i\mathbf k.\mathbf x) a(\mathbf k,t)\] and the canonical commutation relations to prove that \[ [a(\mathbf k), a^\dagger(\mathbf k{'})] = \delta(\mathbf k-\mathbf k{'}).\]

shivahcu's picture 22-02-05 09:02:18 n

[QUE/QFT-04009] QFT-PROBLEM

Node id: 4340page



Using the expansion \[ \psi(x) = \sum a_n u_n(x) \] where \(\{u_n(x)\}\)is a set of orthonormal functions. Assume anti commutation relations for the creation and annihilation operators and

  • prove that \[\matrixelement{0}{\psi(x)\psi(y)}{m,n} = \frac{1}{\sqrt{2}}[u_m(x)u_(y)- u_n(x)u_m(y)];\]
  • show that \[\matrixelement{m}{\psi(x)\psi(y)}{n} = [u_m^*(x)u_n(y)- u_n(x)u_m^*(y)].\]

The answer in part(a) is just the two particle antisymmetric wave function.

shivahcu's picture 22-02-05 09:02:13 n

[QUE/QFT-04007] QFT-PROBLEM

Node id: 4021page
  • The Lagrangian density for the Schrodinger equation is given to be \[\Lsc = i\hbar\psi^*(x,t)\pp[\psi(x,t)]{t} - \frac{\hbar^2}{2m} |\nabla \psi|^2 - \psi^*(x,t)V(x)\psi(x,t)\] Verify that the Euler Lagrange equations for the Schrodinger field coincide with the Schrodinger equation.
  • Find the Hamiltonian of the system. Use Poisson brackets to obtain the Hamiltonian equations of motion.
  • Verify that the Hamilton's equations imply the Euler Lagrange equation of motion.
shivahcu's picture 22-02-05 09:02:08 n

[QUE/QFT-04006] QFT-PROBLEM

Node id: 4020page

Find Heisenberg equations of motion for the operators \(a(k,t)\) and \(a^\dagger(k,t)\)

shivahcu's picture 22-02-05 09:02:07 n

[QUE/QFT-04005] QFT-PROBLEM

Node id: 4019page

Taking the case of free Schrodinger field answer the following questions.

  • Find Heisenberg equations of motion for the operators \(a(k,t)\) and \(a^\dagger(k,t)\)
  • Solve the equations of motion and expre
  • \(a(k,t)\) and \(a^\dagger(k,t)\) as functions of time. Calculate the unequal time commutators \[\big[a(k,t), a(k{'}, t{'})\big],\quad \big[a^\dagger(k,t), a^\dagger(k{'}, t{'})\big],\quad \big[a(k,t), a^\dagger(k{'}, t{'})\big].\]
  • Use your answers and work out the unequal time commutator \[\big[\psi(x,t),\psi^\dagger(x{'},t{'})\big].\]
  • Use your result for unequal time commutator and express \(\psi(x_1,t_1) \psi^\dagger(x_2,t_2)\) in a normal ordered form.
shivahcu's picture 22-02-04 22:02:34 n

[QUE/QFT-04004] QFT-PROBLEM

Node id: 4018page

Compute the commutators \( [\psi(x), H]; [\pi(x), H]\) and verify that the Heisenberg equations of motion coincide with the Schrodinger equation.

shivahcu's picture 22-02-04 21:02:07 n

[QUE/QFT-04003] QFT-PROBLEM

Node id: 4017page

Define \(a(k,t)\) and \(a^\dagger(k,t)\) as Fourier coefficients of free field \(\psi(x,t)\). \[ \psi(x,t)= \frac{1}{(2\pi)^3}\int dx e^{ikx} a(k);\psi^\dagger(x,t)= \frac{1}{(2\pi)^3}\int dx e^{-ikx} a^\dagger(k); \]

  • Use ETCR to show that \[ [(a(k,t), a^\dagger(k{'},t)]= \delta(k-k{'}).\] What are the values of equal time commutators \([a(k,t), a(k{'},t) ], [a^\dagger(k,t), a^\dagger(k{'},t) ].\)
shivahcu's picture 22-02-04 21:02:31 n

[QUE/QFT-04002] QFT-PROBLEM

Node id: 4016page

Compute unequal time commutator \[ \big[\psi(x,t), \psi(y,t{'})\big]\] where the Schrodinger field \(\psi(x,t)\) obey free particle Schrodinger equation.

shivahcu's picture 22-02-04 21:02:52 n

[QUE/QFT-04001] QFT-PROBLEM

Node id: 4015page

Consider free Schrodinger equation as a quantized field.

  • Show that \begin{equation} G(x -x{'}, t -t{'} ) = \matrixelement{0}{T ψ\psi(x, t)\psi^\dagger (x{'}, t{'}))}{0} \end{equation} obeys the equation for Green function of the free particle Schrodinger equation.
  • Use expansion of the field operators in terms of free particle wave function \(N \exp(ikx - iE_k t)\), where \(E_k = \frac{\hbar^2k^2}{2m}\). Obtain an explicit expression for this time ordered product as a function of \(x, t, x{'} , t{'}\).
  • Have you seen this object before? Where?
shivahcu's picture 22-02-04 21:02:58 n
 
X