Notices
 

[NOTES/CM-05009] Keplar Orbit Parameters

For page specific messages
For page author info

Category: 

The equation for the orbit involves two constants of integration. We determine  these constants and obtain an expression for the eccentricity in terms of energy angular momentum etc.. Conditions on  energy for different types of possible orbits , elliptic, parabolic and hyperbolic, are written down.

For an attractive \(-k/r\) potential, the orbit is an ellipse. The equation of the orbit is given by \begin{equation}\Label{EQ101} \frac{\ell_0}{r} = \frac{\mu k}{L^{2}} 1 + \epsilon \cos(\phi - \phi_{0}) \end{equation} where \(\ell_0=\frac{L^{2}}{\mu k}\), and \(L\) is angular momentum, $\epsilon$, and $ \phi_{0}$ are constants of integration.

We shall now relate maximum and minimum values of \(r\), \(r_1\), and (r_2,\), with the eccentricity \(\epsilon\) and energy \(E\). If $ r_{1}$ and $ r_{2}$ are the minimum and maximum values of \(r\), then from the equation of the orbit,\eqref{EQ101}, we have \begin{equation}\Label{EQ20} \frac{1}{r_{1,2}} = \frac{\mu k}{L^{2}} ( 1 \pm \epsilon) \end{equation}

We relate these values \(r_{1,2}\) in terms to \(E\). At the maximum of \(r\), and also at minimum, $ \dot{r} = 0$. The energy conservation equation, \begin{equation} E = \frac{1}{2} \mu \dot{r}^{2} + \frac{L^{2}}{2 \mu r^{2}} + V(r), \end{equation} with \(\dot{r}=0\),becomes \begin{equation} E = \frac{L^{2}}{2 \mu r^{2}} - \frac{k}{r} \qquad \qquad \ \ \ \ \ (\because \dot{r} = 0), \end{equation} or \begin{equation} \frac{1}{r^{2}} - \frac{2 \mu k}{L^{2} r} - \frac{2 \mu E}{L^{2}} = 0. \end{equation} The values $ r_{1}$ and $r_{2}$ are roots of this equation, hence \begin{eqnarray} \frac{1}{r_{1}} + \frac{1}{r_{2}} &=& \frac{2 \mu k}{L^{2}}\\ \frac{1}{r_{1}} \frac{1}{r_{2}} &=& \frac{- 2 \mu E}{L^{2}}\Label{EQ25} \end{eqnarray} \eqref{EQ20} and \eqref{EQ25} give us the desired expressions for $\epsilon$ in terms of energy \begin{equation} \frac{\mu^{2} k^{2}}{L^{4}} ( 1 - \epsilon^{2}) = \frac{-2 \mu E}{L^{2}} \end{equation} or \begin{eqnarray} \epsilon^{2} - 1 &=&\frac{2 E L^{2}}{\mu k^{2}}\\ \epsilon &=& \sqrt{1+\frac{2 E L^{2}}{\mu k^{2}}} \end{eqnarray} Therefore, the final form of the equation of the orbit is \begin{equation} \frac{1}{r} = \frac{\mu k }{L^{2}} ( 1 + \epsilon \cos(\phi - \phi_{0})) \end{equation} $\phi_{0}$ is the value of $\phi$ at the turning point $r = r_{min}$. This equation represents a conic section with eccentricity = $\epsilon$. Types of orbits traversed, corresponding to different values of \(\epsilon\), are summarised below

\(\epsilon < 1\) Ellipse if \(E < 0 \) bounded motion
\(\epsilon = 0 \) Circle \(E = -\frac{\mu k^2}{2L^2} \) bounded  motion
\(\epsilon =1\) Parabola \(E = 0 \) unbounded  motion
\(\epsilon > 1\) Hyperbola \(E > 0 \) unbounded  motion

Exclude node summary : 

n
700
0
 
X