Notices
 

[NOTES/CM-11003] Action Angle Variables

For page specific messages
For page author info

Category: 

The action angle variables are defined in terms of solution of Hamilton-Jacobi equation}. The application of action angle variables to computation of frequencies of bounded periodic motion is explained. An advantage offered by use of action angle variables is that the full solution of the equations of motion is not required.

1. Action, angle variables

For a conservative system, the Hamiltonian is indeendent of time and Hamilton's characteristic function \(W\) obeys the Hamilton-Jacobi equation \begin{equation} H\Big(q,\pp[W]{q_k}\Big) =E. \end{equation} The solution depends on the coordinates and constants of integration \(\alpha_k, k = 1, ..., n\). Assuming that the Hamilton Jacobi equation is completely separable, we can write \begin{equation}\label{EQ02} W\equiv \sum_k W_k, \end{equation}
where each \(W_k\) is a function of a coordinate \(q_k\) and all constants \(\alpha_1 , \alpha_2 , ...\alpha_n\).

Since the momenta are given by \(p_k = \pp[W]{q_k}=\pp[W_k]{q_k}\), the functions \(W_k\) are given by the integrals of \(p_k\). \begin{equation}\label{EQ03} W_k = \int p_k (q_k , \alpha_1 , .., \alpha_n ) dq_k . \end{equation} A set of new variables called action variables \(J_k , k = 1, . . . , n\) are defined as \begin{equation}\label{EQ04} J_k =\frac{1}{2\pi}\oint p_k dq_k. \end{equation} where the integral runs over one cycle. Obviously the action variables are functions of the constants \(\alpha_1 , ..., \alpha_n\) and we write \begin{equation}\label{EQ05} J_k = J_k (\alpha_1 , ..., \alpha_n ), k = 1, 2..., n. \end{equation} Assuming that the above equations can be inverted and the constants \(\alpha_1 , ..., \alpha_n\) can be expressed in terms of the action variables \(J_k\). Thus the Jacobi complete integral, \eqref{EQ01}, can now be treated as a function of coordinates and the action variables. \begin{equation}\label{EQ06} W (q) = \sum_{k=1}^n W_k (q_k , J). \end{equation} and regard it as a generator of canonical transformation with the action variables \(J\) as the new coordinates. The angle variables, \(\phi_k\), are defined as variables conjugate to \(J_k\) and are given by \begin{equation} \phi_k = \pp[W]{J_k}. \end{equation} The process of separation of variables gives the Hamiltonian as a function of \(\alpha_k\) appearing as constants of separation. Thus we may now regard the Hamiltonian a function of action variables. \begin{equation}\label{EQ08} H = H(J_1 , ..., J_n ). \end{equation} The Hamilton’s equations for the system in action angle variables assume the form \begin{equation} \dd[J_k]{t} =-\pp[H]{W_k}=0, \qquad \dd[\phi_k]{t}= \pp[H]{J_k}\equiv \omega_k, \quad k=1,\ldots,n. \label{EQ10}\end{equation}  where \(ω_k = ω_k(J)\), being a function of \(J\)'s alone, are constants. The above equations have the solutions \begin{equation} J_k = \text{constant},\qquad \phi_k (t) = ω_k t + \phi_k (0). \end{equation}

2. Frequencies of bounded motion

Let us now consider a hypothetical cycle in which only one of the coordinates \(q_k\) changes with time and all other coordinates are held fixed. We shall now argue that the frequency \(ν_k\) of such a cycle is \begin{equation}\label{EQ11} \nu_k = \pp[H]{J_k} \end{equation} The change in \(W_k\) over this cycle is, by definition of \(J_k\), equal to \(2π J_k\). So using \eqref{EQ10} we have\begin{eqnarray} 2\pi J_k &=& \oint p_k dq_k =\oint J_k d\phi_k\label{EQ12}\\ &=& \oint J_k \dd[\phi]{t}\, dt=\oint J_k \pp[H]{J_k}\, dt\label{EQ13}\\ &=&J_k \tau_k \pp[H]{J_k}, \qquad \qquad(\because \text{integrand is a constant}) \label{EQ14} \end{eqnarray} where \(\tau_k\) is the time period of the cycle. Thus we get \begin{equation} \tau_k \, \pp[H]{J_k}= 2\pi \Longrightarrow \frac{2\pi}{\tau_k}= \pp[H]{J_k} \end{equation} The last equality says that the frequency \(ν_k\) associated with the hypothetical cyclic motion is \begin{equation} \boxed{\nu_k = \pp[H]{J_k}}. \end{equation}

Exclude node summary : 

n
700
0
 
X