Category:
In this article various thermodynamic functions are expressed in terms of the grand canonical partition function.
$\newcommand{\pp}[2][]{\frac{\partila #1}{\partial #2}}\newcommand{\Zca}{\mathcal Z}\newcommand{\Label}[1]{\label{#1}}$
The grand canonical partition function is is s function of \(V,T, \mu\). For convenience, this dependence will be understood and not shown explicitly.
Entropy
To find entropy we use
\begin{eqnarray}
S &=&-k\sum_{N=0}^\infty \sum_{E_k} P(E_k,N) \ln P(E_k,N)\Label{EQ09}\\
&=& - k\sum_{N=0}^\infty \sum_{E_k} P(E_k,N) \big(- \ln \Zca +\beta(\mu N -E)
\big)\Label{EQ10}
\end{eqnarray}
Thus we have
\begin{eqnarray}
\boxed{S = k[\ln \Zca + \beta \bar{U} - \beta \mu \bar{N}]}.\Label{EQ11}
\end{eqnarray}
Mean Energy and Mean Number
We will relate different thermodynamic functions to the derivatives of logarithm of the partition function $\Zca$ with respect to $\beta$ and $\mu$. These derivatives are easily computed. Note the definitions of $\bar{E} and \bar{N}$ are, as usual, as follows
\begin{eqnarray}
\bar{N} = \sum_{N=0}^\infty\sum_{E_k} N P(E_k, N); \qquad
\bar{U} = \sum_{N=0}^\infty\sum_{E_k} E_k P(E_k,N)
\end{eqnarray}
\begin{eqnarray}
\dd[\Zca]{\mu}
&=& \sum_{N=0}^\infty\sum_{E_k} \beta Ne^{\beta(\mu N -E_k)} = \beta
\sum_{N=0}^\infty\sum_{E_k} Ne^{\beta(\mu N -E_k)}\Label{EQ03}\\
&=& \Zca \beta\bar{N} \Label{EQ04B}\\
\dd[\Zca]{\beta}
&=& \sum_{N=0}^\infty\sum_{E_k} (\mu N - E_k)e^{\beta(\mu N -E_k)},\Label{EQ04}
\\
&=& \Zca(\mu \bar{N} - \bar{E}) =\Zca (\mu \bar{N} -U) .\Label{EQ05}
\end{eqnarray}
Hence we have
\begin{eqnarray}
\bar{N} &=& \frac{1}{\beta}\frac{1}{\Zca}\dd[\Zca]{\mu}= kT \Big(\dd[\ln
\Zca]{\mu} \Big)\Label{EQ06}\\
\mu \bar{N} -\bar{U}
&=& \frac{1}{\Zca}\dd[\Zca]{\beta} = \dd[\ln \Zca]{\beta}\Label{EQ07}
\end{eqnarray}
Thus the average internal energy $\bar{U}$ is given by
\begin{eqnarray}
\qquad \bar{U}
&=& \mu \bar{N} -\dd{\beta}(\ln \Zca) = kT \mu \dd{\mu}(\ln \Zca)
-\dd{\beta}(\ln \Zca).\Label{EQ08}
\end{eqnarray}
Remember |
For an open systems the energy and mean number do not have a definite value. However, the number of micro states is sharply peaked around the mean values of energy, \(\bar E\) and number \(\bar N\). The variance of energy and number is negligible compared to the mean values for macroscopic systems. In this sense the system can be thought as having \(E, N\) equal to their mean values. |