Notices
 

[NOTES/CM-04004] Summary of Lagrangian and Hamiltonian Formalisms

For page specific messages
For page author info

A  summary of Lagrangian and Hamiltonian formalisms is given in tabular form.

  Lagrangian Formalism Hamiltonian Formalism
 
1). Basic Variables \( q_{k}, \dot{q}_{k}\) \( q_{k}, p_{k}\)
 
2). States Rep by a point Rep by a point
  in configuration space in phase space
 
3). EOM Euler Lagrange Hamilton's EOM
  EOM \( \dot{q}_{k} =\frac{\partial H}{\partial p_{k}}\)
  \( \frac{\partial L}{\partial {q}_{k}} - \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_{k}} \right) = 0\) \( \dot{p}_{k} = - \frac{\partial H}{\partial q_{k}} \)
 
4). Action Hamilton's  and Wiess  acion
Principle Wiess  action Principle  in  phase
  Principle  gives space  gives  EOM
  Laws  of  motion
 
5). System Contained  in Described \ by
Specific  information Lagrangian Hamiltonian
(Interactions)
 
6). Full \ solution Values of \(q_{k}, \dot{q}_{k}\) \ at Values  of \( q_{k}, p_{k}\)
requires initial time at  initial  time
 
7). Conservation Related to Generators of
\ Laws Symmetries  of \(L\) transformations have
  in configuration zero Poisson bracket
  space with the Hamiltonian
 
 

Exclude node summary : 

n
0
 
X