Notices
 

[NOTES/CM-02006] Generalized Force and Lagrange Equations -- An Example

For page specific messages
For page author info

Category: 

Whenever the generalized force \(Q_k\) \begin{equation}\label{AB01} Q_k=\sum_\alpha F^\text{(e)}_\alpha \pp[\vec{x}_\alpha]{q_k}. \end{equation} can be written in the form \begin{equation}\label{AB02} Q_k = \dd{t}\Big(\pp[U]{\dot{q}_k}\Big)-\pp[U]{q_k} . \end{equation} the equations of motion take the Euler Lagrange form with \(L=T-U\). It is demonstrated that the Lorentz force,the force on a charged particle in e.m. fields, has the form as in \eqref{AB02}. An expression for the generalized potential \(U\) is derived.


Recall generalized force and Lagrange equations

d' Alembert's principle has led to the equations of motion for each generalized  coordinate in the form \begin{equation} \dd{t}\Big(\pp[T]{\dot{q}_k}\Big) - \pp[T]{q_k} = Q_k \end{equation} where \(Q_k\) is the generalized force given by \begin{equation} Q_k=\sum_\alpha F^\text{(e)}_\alpha \pp[\vec{x}_\alpha]{q_k}. \end{equation} The generalized potential \(U\) is defined  by  equation \begin{equation} Q_k = \dd{t}\Big(\pp[U]{\dot{q}_k}\Big)-\pp[U]{q_k} . \end{equation} Whenever velocity dependent forces can be derived from generalized potential, the Lagrangian becomes \(L=T-U.\)

Generalized potential for Lorentz force

The Lorentz force on a charged particle in electric field \(\vec{E}\) and magnetic field \(\vec{B}\) is given by \begin{equation}\label{EQ01} \vec{F}= q (\vec{E}  + \vec{v}\times \vec{B}) \end{equation} where \(q\) is the electric charge of the particle. We need to express the fields in terms of {\it vector and scalar potentials}, \(\phi, \vec{A}\) related to the fields by means of the equations \begin{equation}\label{EQ02} \vec{E}=-\dd[\vec{A}(\vec{x},t)]{t} - \nabla \phi(\vec{x},t), \qquad \vec{B}=\nabla \times \vec{A}. \end{equation}

 
The components of the Lorentz force are given by

\begin{eqnarray}\nonumber
 F_1 &=& qE_1 + q (\vec{v}\times\vec{B})_1 \\
 &=& - q \Big(\pp[\phi]{x_1}+\pp[A_1]{t}\Big) + q (v_2B_3-v_3B_2)\\\nonumber
 &=& - q \Big(\pp[\phi]{x_1}+\pp[A_1]{t}\Big) +
    q v_2\Big(\pp[A_2]{x_1}- \pp[A_1]{x_2}\Big)
 -q v_3\Big(\pp[A_1]{x_3}- \pp[A_3]{x_1}\Big)\\
 &=& -q\Big(\pp[\phi]{x_1}+\pp[A_1]{t}\Big) + q\Big\{v_2 \pp[A_2]{x_1} + v_3\pp[A_3]{x_1}\Big\}-
       q\Big\{v_2\pp[A_1]{x_2}+  v_3\pp[A_1]{x_3}\Big\}
\end{eqnarray}

By adding and subtracting \(qv_1\pp[A_1]{x_1}\), we rewrite the above expression as

\begin{eqnarray}
 F_1&=& - q \pp[\phi]{x_1}-q\pp[A_1]{t} +
         q\Big\{v_1\pp[A_1]{x_1} + v_2 \pp[A_2]{x_1} + v_3\pp[A_3]{x_1}\Big\}
      - q\Big\{v_1 \pp[A_1]{x_1}+v_2\pp[A_1]{x_2}+  v_3\pp[A_1]{x_3}\Big\}\\\nonumber
     &=& -q   \pp[\phi]{x_1} -q\pp[A_1]{t}  
           +  q v_k\pp[A_k]{x_1} - q v_k\pp[A_1]{x_k} \\\nonumber
     &=& -q   \pp[\phi]{x_1} +  q \pp[(v_k A_k)]{x_1} -\Big(\pp[A_1]{t} +
      \pp[x_k]{t}\pp[A_1]{x_k} \Big)  \\\nonumber
      &&\qquad\qquad \text{Combine the last terms into a single expression} \\
     &=& -q   \pp[\phi]{x_1} +  q \pp[(v_k A_k)]{x_1} -
     \dd[A_1]{t} \label{EQ09}
\end{eqnarray}


Our manipulations are almost complete. Noting that the vector potential does not depend on velocity components\(v_k\) we will have  \(\pp[A_1]{v_1}=0\), therefore

\begin{eqnarray}
 A_1 = \pp[A_1v_1]{v_1} = \pp{v_1}(A_kv_k) \qquad \because k=2,3 \text{ terms are zero}
\end{eqnarray}

Substituting for \(A_1\) in the last term \eqref{EQ09}, we are led to \begin{equation} F_1 =  -q   \pp[\phi]{x_1} +  q \pp[(A_kv_k)]{x_1} - q \dd{t}\Big[\pp{v_1}\big(A_kv_k\big)\Big]       \end{equation} Since \(\phi(\vec{x})\) depends only on \(\vec{x}\) and is independent of velocities, \(\pp[\phi(\vec{x})]{v_k}=0\). Adding an extra vanishing term we arrive at

\begin{eqnarray}\nonumber
 F_1&=&  -\pp[\phi]{x_1} +  q \pp[(A_kv_k)]{x_1} - q \dd{t}\Big[\pp{v_1}\big(A_kv_k\big)\Big]
  + \mHighLight{$\dd{t} \Big[ \pp[\phi]{v_1}\Big]$}\\\nonumber
  && \qquad \mHighLight{Extra term added here is zero}\\
  &=& -\pp[U]{x_1} + \dd{t}\Big[\pp[U]{\dot{x}_1}\Big]
\end{eqnarray}


where \(U =q \phi - q\vec{v}\cdot\vec{A}\) is generalized potential. We get similar expressions for other components of Lorentz force and \begin{equation} F_k = - \pp[U]{x_k} + \dd{t} \Big[\pp[U]{\dot{x}_k}\Big]. \end{equation} This give the Lagrangian for the charged particle to be

\begin{eqnarray}
 L &=& \frac{1}{2}m \Big(\dd[\vec{x}]{t}\Big)^2- U\\
   &=& \frac{1}{2}m \Big(\dd[\vec{x}]{t}\Big)^2 - q\phi + q\pp[\vec{x}]{t}\cdot\vec{A}.
\end{eqnarray}

For a system of several charged particle with charges \(q_\alpha\),  the Lagrangian takes the form

\begin{eqnarray}
   L= \sum_\alpha\left\{\frac{1}{2}m_\alpha \Big(\dd[\vec{x}_\alpha]{t}\Big)^2 -
   q_\alpha\phi(\vec{x}_\alpha) +
   q_\alpha\big(\vec{v}_\alpha\cdot\vec{A_\alpha}\big)\right\} + \ldots .
\end{eqnarray}

where \(\ldots\) represent potential term, \(\frac{1}{2}\sum_{\alpha\ne\beta}\frac{q_\alpha q_\beta}{|\vec{x}_\alpha-\vec{x}_\beta|}\) corresponding to the Coulomb interactions of  the charged particles.

Exclude node summary : 

n
700
0
 
X