Notices
 

[NOTES/EM-12001]-Lorentz transformations

For page specific messages
For page author info

The basic equations of Maxwell's theory are written down in relativistic notation. Using Lorentz transformations of the potentials, the expressions of the scalar and vector potentials of a point charge moving with a uniform velocity are obtained.


 

1. Lorentz transformation and four vectors

\begin{FileText}{ Let \(K\) and \(K ^\prime\) be two Lorentz frames such that \(K^\prime\) moves with velocity \(v\) w.r.t. the frame \(K\) and at initial time \(t=t^\prime=0\) the coordinate axes of the two frame coincide. The space time coordinates of an event as observed in the two frames will be related by Lorentz transformation \begin{eqnarray} t^\prime = \frac{t-vx/c^2}{\sqrt{(1-(v/c)^2}}, \qquad x^\prime= \frac{x-vt}{\sqrt{1-(v/c)^2}},\quad y^\prime=y, \quad z^\prime=z. \label{E1} \end{eqnarray} We will use units in which \(c=1\). We use the four vector notation \(x^\mu=(x^0,x^1,x^2,x^3)=(t, \vec{x})\) to denote the coordinates of an event. The greek indices \(\mu,\nu, \lambda \) etc will take values 0,1,2,3 and latin indices \(i,j,k\) etc will take values 1,2,3. A {\it contravariant four vector} \(V^\mu\) is an object whose components transform like \(x^\mu\) under a Lorentz transformation. Examples of other four vectors are energy-momentum and velocity four vectors. The energy-momentum four vector \(p^\mu\) has components \begin{equation} p^\mu = (E, \vec{p}) = \Big( \frac{mc^2}{\sqrt{1-v^2}}, \frac{m\vec{v}}{\sqrt{1-v^2}}\Big). \end{equation} The velocity four vector is \(v^\mu= p^\mu/m\) and we have \begin{equation} v^\mu= ( \frac{1}{\sqrt{1-v^2}}, \frac{\vec{v}}{\sqrt{1-v^2}}\Big) . \end{equation} % We introduce the metric tensor \(g^{\mu\nu}\) by \begin{equation} g^{00}=1, g^{11}=g^{22}=g^{33}=g^{44}=-1 \end{equation} and all other, the off diagonal, components are zero, \(g^{mn}=0\) if \(m\ne n\). Its inverse \(g_{\mu\nu}\) is defined by \begin{equation} g^{\mu\nu} g_{\nu\rho}= \delta^{\mu}_\rho. \end{equation} and is also diagonal \begin{equation} g_{00}=1, g_{11}=g_{22}=g_{33}=-1\\ \end{equation} and we have \(g_{mn}=0\) if \(m\ne n\). The metric tensor, written in a matrix form, is \begin{equation}\label{EQ07} g^{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 &-1 & 0 & 0\\ 0 & 0 &-1 & 0\\ 0 & 0 & 0& -1 \end{pmatrix} \end{equation} The matrix for \(g_{\mu\nu}\) will be the inverse of the above matrix and hence the expression is identical with \eqRef{EQ07}. A general Lorentz transformation will be written as \begin{equation} x^{\mu\prime} = \sum_\nu {\Lambda^\mu} _\nu x^\nu . \end{equation} For a scalar field, the derivatives w.r.t to \(x^\mu\) will be written as \begin{equation} \Big(\pp[\phi]{x^0}, \pp[\phi]{x^1}, \pp[\phi]{x^2}, \pp[\phi]{x^3} \Big) = \partial_\mu \phi = \Big(\pp[\phi]{x^0}, \nabla \phi \Big) \end{equation} The partial derivatives \( \pp{x^{\mu}} = \Big( \pp{x^0}, \nabla \Big)\). are seen to transform differently and one has \begin{eqnarray} {\partial_\mu}^\prime = \pp{x^{\mu\prime}} = \sum_\nu \pp[x^\nu]{x^{\mu\prime}} \pp{x^\nu} = \sum_\nu{\Lambda^\nu} _\mu \partial_\nu \end{eqnarray} A four component object which transforms like derivatives will be called a {\it covariant four vector}. Form now onwards Einstein summation convention will be used and a summation over all values of a repeated index will be understood. % The metric tensor will be used to switch from contravariant to covariant vectors and from covariant to contravariant forms. So for example \(a_\mu\), defined by \begin{equation} a_\mu = g_{\mu\nu} a^\nu, \qquad a^\mu= g^{\mu\nu} a_\nu, \end{equation} will be a covariant vector. Also we will have \begin{equation} a^\mu = g^{\mu\nu} a_\nu. \end{equation} For example, we will have \begin{equation} \partial^\mu \phi(x)= g^{\mu\nu}\partial_\nu \phi(x) = \Big(\pp[\phi(x)]{t}, -\nabla \phi\Big). \end{equation} % Let \(a^\mu=(a^0, \vec{a})\) and \(b^\mu=(b^0, \vec{b})\) be two four vectors. Define \(a\cdot b\) by \begin{equation} a\cdot b = a^0b^0 - \vec{a} \cdot \vec{b}. \end{equation} Then \(a\cdot b\) is invariant under Lorentz transformations, {\it i.e.} it has the same value in all Lorentz frames. The scalar product can be written as \begin{eqnarray} a\cdot b &=& a^\mu b_\mu = a_\mu b^\mu \\ &=& g_{\mu\nu} a^\mu b^{\nu} = g^{\mu\nu}a_\mu b_\mu. \end{eqnarray} For velocity four vector and four momentum vector, we have \[v\cdot v=1 \text{ and } p\cdot p= m^2.\] Also we have \begin{eqnarray} \partial^\mu\partial_\mu &=& \partial^\mu \partial_\mu = -\square^2, \\ \text{where } \square &=& \DD{t} - \sum_{k=1}^3 \PP{x_k}\\ &=& \DD{t} - \nabla^2. \end{eqnarray} The operator \(\square\) is called de Alembertian operator. Note that some books use notation \(\square^2\) for de Alembertian operator.

2.EM theory quantities in four vector notation

The current density \( \vec{j}\) and charge density \(\rho\) form components of four vector current density \(j^\mu=(\rho, \vec{j})\). Similarly the scalar and vector potential form the time and space components of four vector potential \(A_\mu= (\phi, \vec{A})\). Then we have \begin{eqnarray} \left(\DD{t} - \nabla^2 \right) \vec{A} &=& \mu_0 \vec{j}\\ \left(\DD{t} - \nabla^2 \right) \phi &=& \frac{\rho}{\epsilon_0}. \end{eqnarray} Note that \(\mu_0=1/(\epsilon_0c^2)\) and we have taken \(c=1\). The above equations can be combined into a single four vector equation: \begin{equation} \square A_\mu = \frac{1}{\epsilon_0} j_\mu, \qquad \mu=0,1,2,3. \end{equation} The equation of continuity \begin{equation} \dd[\rho]{t} + \nabla \cdot \vec{j} =0 \end{equation} takes the form \begin{equation} \dd[\rho]{x^0} + \nabla \vec{j}=0; \qquad \partial_\mu j^\mu = 0. \end{equation} The transformation properties of the current and charge density is the same as four vector. For a frame \(K^\prime\) moving w.r.t frame \(K\) along the \(X^1\) axis with velocity \(v\), we have \begin{equation} \rho^\prime = \frac{\rho- v j_x}{\sqrt{1-v^2}},\quad j^\prime_x = \frac{j_x-v\rho}{\sqrt{1-v^2}}, \quad j_y^\prime= j_y, \quad j_z^\prime = j_z. \end{equation} Similarly, we have \begin{equation} \phi^\prime = \frac{\phi- v A_x}{\sqrt{1-v^2}}, \quad A^\prime_x = \frac{A_x-v\phi}{\sqrt{1-v^2}},\quad A_y^\prime= A_y, \quad A_z^\prime =A_z. \label{E25} \end{equation} for the vector potential.

3.Potentials of a Moving Charge

Consider a charge moving with velocity \(v\) as seen from a frame \(K\). Let \(K^\prime\) be the moving frame in which the charged particle is seen to be rest. Therefore the potentials in the moving frame at a point \(P\) will be given by \begin{equation} \phi^\prime(P) = \frac{1}{4\pi\epsilon_0 r^\prime}, \quad\quad\vec{A}^\prime=0. \end{equation} The potentials at the point \(P\) in the frame \(K\) will be obtained by transformation, inverse to that in \eqref{E25} \begin{equation} \rho(P)=\frac{1}{4\pi\epsilon_0}\frac{1}{r^\prime} \end{equation} For a charge at rest at the origin in a frame \(K\) the potentials are \begin{eqnarray} \phi(P)= \frac{\phi^\prime(P)+ v A_x^\prime(P)}{\sqrt{1-v^2}}, &\quad& A^\prime_x(P) = \frac{A_x^\prime(P)+v\phi^\prime(P)}{\sqrt{1-v^2}}\\[2mm] A_y^\prime(P)= A_y(P), &&\quad A_z^\prime(P) =A_z(P). \label{E28}. \end{eqnarray} Remembering that the coordinates of a space-time point \(P\) in the two frames are related by \EqRef{E1}, we get \begin{eqnarray} \phi(\vec{r},t)&=& \frac{1}{\sqrt{1-v^2}} \frac{q}{4 \pi\epsilon_0 } \Big(\sqrt{x^{,\prime 2}+y^{\,\prime 2}+z^{\,\prime 2}}\Big)^{-1}\\ \phi(\vec{r},t) &=& \frac{1}{\sqrt{1-v^2}} \frac{q}{4\pi\epsilon_0} \left\{\frac{(x +vt)^2}{(1-v^2)}+y^2+z^2\right\}^{-1/2}\\ \end{eqnarray} and \begin{equation} \vec{A}(\vec{r},t) = \frac{\vec{v}}{\sqrt{1-v^2}} \frac{q}{4\pi\epsilon_0} \left\{\frac{(x +vt)^2}{(1-v^2)}+y^2+z^2\right\}^{-1/2}\\ \end{equation}

References

  • Sec 25-4 ELectrodynamics in four dimensional notation Sec 26-1 The four-potential of a moving charge R. P. Feynman, Robert B. Leighton and Mathew Sands Lectures on Physics, vol-II, B.I. Publications (1964)
  • Sec 12.3.4 Electrodynamics in tensor notation David Griffiths, Introduction to Electrodynamics, 3rd EEE edn, Prentice Hall of India Pvt Ltd New Delhi, (2002).
  • Sec 22.7 Covariant Electrodynamics  Zangwill, Modern ELectrodynamics, Cambridge University Press, Cambridge, (2012)

 

Exclude node summary : 

n

4727:Diamond Point

0
 
X