The electrostatic energy of a uniformly charged solid sphere is computed by computing the energy required to bring infinitesimal quantities and filling up the sphere.
1. Uniformly charged solid sphere
We will compute the electrostatic energy of a uniformly charged sphere using \(W\)
\begin{eqnarray} W&=&\frac{\epsilon_0}{2}\int\int\int(\bar{E}\cdot\bar{E})\,d^3r \label{eq30}\\
d^3r&=&r^2\sin\theta dr\,d\theta d\phi\label{eq31}\\
\nonumber W&=&\frac{\epsilon_0}{2}\int_0^{\infty}dr\int_0^{\pi}d\theta \int_0^{2\pi}d\phi\, (\bar{E}\cdot\bar{E})\,r^2. \end{eqnarray}
The magnitude of the electric field of a uniformly charged sphere is
\begin{equation} \mid\bar{E}\mid =
\begin{cases} \dfrac{Q r}{(4\pi\epsilon_0) R^3}, & \text{for } r<R,\\
\dfrac{q}{(4\pi\epsilon_0)r^2}, & \text{for } r >R . \end{cases} \end{equation}
Thus the electrostatic energy is given by
\begin{eqnarray} W&=&\frac{\epsilon_0}{2}(4\pi)\int_0^{\infty}r^2\mid\bar{E}\mid^2dr\\
\label{eq34} \nonumber &=&(2\pi\epsilon_0) \int_0^R \Big(\frac{1}{4\pi\epsilon_0}\frac{Qr}{R^3} \Big)^2r^2\, dr+(2\pi\epsilon_0) \int_R^{\infty} \Big(\frac{1}{4\pi\epsilon_0}\frac{Q}{ r^2}\Big)^2\,dr\\
\nonumber &=&(2\pi\epsilon_0)\Big(\frac{Q}{4\pi\epsilon_0\,R^6}\Big)^2\Big\{ \int_0^Rr^4dr+\int_R^{\infty}\frac{1}{r^2}dr\Big\}\\
\nonumber &=&\frac{Q^2}{8\pi\epsilon_0}\Big(\frac{1}{5R}+\frac{1}{R}\Big)\\
\nonumber &=&\frac{Q^2}{8\pi\epsilon_0}\frac{6}{5R} \\
&=&\frac{3}{5}\Big(\frac{Q^2}{4\pi\epsilon_0R}\Big) \label{eq35}
\end{eqnarray}
Exclude node summary :
Exclude node links:
4727:Diamond Point