Category:
The large distance expansion of potential due to a localized charge distribution is obtained. The first three terms receiving contributions from the monopole, the dipole moment and the quadrupole moment are explicitly displayed. Important properties of dipole and quadrupole moment are discussed.
$\newcommand{\mid}{|}$
$\newcommand{\label}[1]{}$
1 Multipole expansion of potential
The electric potential due to system of point charges \(q_\alpha\) located at positions \(\vec{r}_\alpha\) is given by \begin{equation}\label{Eq01} \phi(\vec{r}) = \frac{1}{4\pi\epsilon_0}\sum_\alpha \frac{q_\alpha}{|\vec{r}-\vec{r}_\alpha|}. \end{equation} For a continuous charge distribution density \(\rho(\vec{r})\), the potential is given by \begin{equation}\label{Eq02} \phi(\vec{r})=\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}\,')}{|\vec{r}-\vec{ r }\, ^\prime|}d^3r\,'. \end{equation} To know the potential or the electric field at large distances we need not know the distribution of charges, or the charge density everywhere. It is sufficient to know a few 'multipole moments' of the charge distribution. Let us assume that the charge distribution is confined to a finite volume \(V\). In \EqRef{EQ02}, \(\vec{r}\,^\prime \) refers to a point in volume \(V\) and \(\vec{r}\) to a field point where we are interested in finding the electric field or the potential. Then \begin{equation}\label{Eq03} |\vec{r}-\vec{r}\,^\prime| = \sqrt{r^2-2\vec{r}\cdot\vec{r}\,^\prime + \vec{r}\,^{\prime2} } = r\Big(1- 2\frac{\vec{r}\cdot\vec{r}\,^\prime}{r^2} + \frac{r\,^{\prime2}}{r^2}\Big)^{1/2}. \end{equation} and we derive an expansion of \eqRef{EQ02} for large \(r\) by expanding the r.h.s. of \EqRef{EQ03} in powers of \((r\,^\prime/r)\) as follows. \begin{eqnarray} \frac{1}{|\vec{r}-\vec{r}\,^\prime|} &=& \frac{1}{r} \Big(1- 2\frac{\vec{r}\cdot\vec{r}\,^\prime}{r^2} + \frac{r\,^{\prime2}}{r^2}\Big)^{-1/2}.\\ &=& \frac{1}{r}\Big[ 1 - \frac{1}{2} \Big(-\frac{2\vec{r}\cdot\vec{r}\,^\prime}{r^2} +\frac{r\,^{\prime 2}}{r^2}\Big) \nonumber\\
&&\qquad+ \frac{1}{2}\big(-\frac{1}{2}\big)\big(-\frac{1}{2}-1\big) \Big(- 2 \frac{\vec{r}\cdot\vec{r}\,^\prime}{r^2}+ \frac{r\,^{\prime2}}{r^2} \Big)^2 + \ldots \Big]\\ &=&\frac{1}{r}\Big[1+ \frac{\vec{r}\cdot\vec{r}\,'}{r^2} +\frac{1}{2}\frac{1}{r^4}\Big( 3(\vec{r}\cdot\vec{r}\,')^2 - r^ 2 r\,^{\prime2}\Big) + \ldots \Big]. \end{eqnarray}
2 Quadrupole moments in 1,2,3 notation:
In the 1-2-3 notation for vectors and using Einstein summation convention we can rewrite the expressions for quadrupole moment as \begin{equation} Q_{ij} = \frac{1}{2} \int \rho(\vec{x})\big(3x_ix_j-|x|^2\delta_{ij}\big) d^3x. \end{equation} In the \(x-y-z\) notation, for a system of point charges the components of quadrupole moment are given by \begin{eqnarray} Q_{xx} &=& \sum_\alpha (3x_\alpha^2 - \vec{r}_\alpha^2) q_\alpha\\ Q_{yy} &=& \sum_\alpha (3y_\alpha^2 - \vec{r}_\alpha^2) q_\alpha\\ Q_{zz} &=& \sum_\alpha (3z_\alpha^2 - \vec{r}_\alpha^2) q_\alpha\\ Q_{xy} &=& Q_{yx} = \sum_\alpha 3 x_\alpha y_\alpha q_\alpha\\ Q_{yz} &=& Q_{zy} = \sum_\alpha 3 y_\alpha z_\alpha q_\alpha\\ Q_{zx} &=& Q_{xz} = \sum_\alpha 3 z_\alpha x_\alpha q_\alpha \end{eqnarray}
3 Large distance expansion of the potential --- The first three terms
Thus the potential has the following expansion in powers of \(r\). \begin{eqnarray} \phi(\vec{r}) &=& \frac{1}{4\pi\epsilon_0} \frac{1}{r} \int \rho(\vec{r}') d^3r'\\ && + \frac{1}{4\pi\epsilon_0} \frac{1}{r^3} \int \rho(\vec{r}^\prime) \vec{r}^\prime d^3r' \\ && + \frac{1}{4\pi\epsilon_0} \frac{1}{2} \int \frac{3(\vec{r} \cdot \vec{r}^\prime)^2 - (r^2)(r^{\prime 2})}{r^5} \rho(\vec{r}^\prime) d^3r^\prime + \ldots \end{eqnarray} If we define a unit vector \(\hat{n}\) by \(\vec{r} = r \hat{n}\) we can write the above expansion as \begin{eqnarray} \boxed{ \phi(\vec{r}) = \frac{1}{4\pi\epsilon_0}\left( \frac{q}{r} + \frac{\hat{n}\cdot\vec{p}}{r^2} + \frac{\hat{n}\cdot \overleftrightarrow{Q} \cdot{n}}{r^3} + \ldots \right)} \end{eqnarray} and in dyadic notation we write \begin{eqnarray} \vec{p} &=& \int\vec{r}\,^\prime \rho(\vec{r}\,^\prime) \,d^3r\,^\prime \\ \overleftrightarrow{Q}&=& \frac{1}{2} \int \big(3 (\overleftarrow{r}^\prime )( \overrightarrow{r}^\prime) -\overleftrightarrow{I} r^{\,\prime 2}\big)\rho(\vec{r}\,^\prime)\, d^3 r\,^\prime. \end{eqnarray} It should be noted that out of the nine components only six components of quadrupole moment are independent because the quadrupole moment tensor is symmetric (\(Q_{xy}=Q_{yx}, Q_{yz}= Q_{zy}, Q_{zx}= Q_{xz}\))
4 Properties of Dipole and Quadrupole Moment
The value of the dipole moment, in general, depends on the choice of origin. If the coordinate axes are translated by a vector \(\vec{a}\), the position of charge \(q_\alpha\) w.r.t. new coordinate axes becomes \(\vec{r}^\prime_\alpha \vec{r}_\alpha -\vec{a}\) and the expression for the dipole moment w.r.t. the new coordinate axes takes the form \begin{eqnarray} \vec{p}^\prime &=& \sum_\alpha q_\alpha \vec{r}_\alpha^\prime\\ &=& \sum_\alpha\big( q_\alpha (\vec{r}_\alpha-\vec{a}\big)\\ &=& \vec{p}- \vec{a} \sum_\alpha q_\alpha. \end{eqnarray} Thus we see that the dipole moment of a charge distribution does not change if the total charge of the system \(q= \sum_\alpha q_\alpha\) vanishes. One can similarly show that the quadrupole moment of a system of charges is independent of choice of origin if the total charge and the dipole moment of the system vanish.
Exclude node summary :
Exclude node links:
4727:Diamond Point