Notices
 

QS 14: Non-relativistic colliding beams

For page specific messages
For page author info

We are now ready to define cross section for colliding beams or, as explained above, beam on target. Two beams with sharp values of momenta $\vv{k}_1$ and $\vv{k}_2$ respectively and other quantum numbers $\gamma_1,\gamma_2$ (resp.) collide and scatter. We are interested in the final states with projection operators
\begin{eqnarray*} P_\xi=\kk{\xi_1\xi_2}\bb{\xi_1\xi_2}|=
\int_\Delta d^3\vv{k}_1'\int d^3\vv{k}_2'
\kk{\vv{k}_1'\gamma_1',\vv{k}_2'\gamma_2'}
\bb{\vv{k}_1'\gamma_1',\vv{k}_2'\gamma_2'}|
\end{eqnarray*}
The number of particles making a transition into these final states is
\begin{eqnarray*} n_{\xi_1\xi_2}=\frac{2}{\hbar}{\rm Im}
\sum_{i,j}\bb{\phi_{1i}\phi_{2j}}|B\kk{\phi_{1i}\phi_{2j}} \end{eqnarray*}
with $B$ as before given by
\begin{eqnarray*} B = {\molp}^\dagger P_\xi V\molp \end{eqnarray*}
The number becomes
\begin{eqnarray*} n_{\xi_1\xi_2}=\rho_1N_2(2\pi\hbar)^3\frac{2}{\hbar}{\rm Im}\,
b(\vv{k}_1\gamma_1,\vv{k}_2\gamma_2;\vv{k}_1\gamma_1,\vv{k}_2\gamma_2)
\end{eqnarray*}
where $b$ is defined by
\begin{eqnarray*} \bb{\vv{k}_1\gamma_1,\vv{k}_2\gamma_2}|B
\kk{\vv{k}_1''\gamma_1,\vv{k}_2''\gamma_2}=
\ddd{\vv{K}-\vv{K}''}
b(\vv{k}_1\gamma_1,\vv{k}_2\gamma_2;\vv{k}_1''\gamma_1,\vv{k}_2''\gamma_2)
\end{eqnarray*}

To calculate this we begin with the general expression
\begin{eqnarray*} \bb{\vv{k}_1\gamma_1,\vv{k}_2\gamma_2}|{\molp}^\dagger P_\xi V\molp
\kk{\vv{k}_1''\gamma_1,\vv{k}_2''\gamma_2}
\end{eqnarray*}
and put $\vv{k}_1''=\vv{k}_1,\vv{k}_2''=\vv{k}_2$ at the end.  Use the Lippmann-Schwinger equation to write matrix element of ${\molp}^\dagger$ in terms of complex conjugate of that of $V\molp$.  There are two momentum conserving delta functions, we can integrate over one by changing to variables
\begin{eqnarray*} \int_\Delta d^3\vv{k}_1'\int d^3\vv{k}_2'
=\int_\Delta d^3\vv{K'}\int d^3\vv{k}' \end{eqnarray*}
where $\vv{K}'=\vv{k}_1'+\vv{k}_2'$ is the total momentum and
$\vv{k}'=(m_1\vv{k}_2'-m_2\vv{k}_1')/(m_1+m_2)$ the relative momentum.
For free states the energies are
\begin{eqnarray*} E_{\vv{k}_1\vv{k}_2}=\frac{|\vv{k}_1|^2}{2m_1}+\frac{|\vv{k}_2|^2}{2m_2}
=\frac{|\vv{K}|^2}{2M}+\frac{|\vv{k}|^2}{2\mu}\equiv E_{\vv{K}}+e_{\vv{k}}
=E_{\vv{K}\vv{k}}
\end{eqnarray*}
with $M=m_1+m_2$ is the total mass and $\mu=m_1m_2/(m_1+m_2)$ the reduced mass. We get, separating into total and relative momenta,
\begin{eqnarray*} \bb{\vv{p}_1\beta_1,\vv{p}_2\beta_2}|V\molp
\kk{\vv{p'}_1\beta_1',\vv{p'}_2\beta_2'}\equiv
\ddd{\vv{P}-\vv{P'}}
T(\vv{p}\beta_1\beta_2,\vv{p'}\beta_1'\beta_2';\vv{P})
\end{eqnarray*}
Therefore,
\begin{eqnarray*} && \bb{\vv{k}_1\gamma_1,\vv{k}_2\gamma_2}|{\molp}^\dagger P_\xi V\molp
\kk{\vv{k}_1''\gamma_1,\vv{k}_2''\gamma_2} =\\
&& \ddd{\vv{K}-\vv{K}''} \times \\
&& T(\vv{k}'\gamma_1'\gamma_2',\vv{k}\gamma_1\gamma_2;\vv{K})^*
T(\vv{k}'\gamma_1'\gamma_2',\vv{k}''\gamma_1\gamma_2;\vv{K'}) \times \\
&&(E_{\vv{K}\vv{k}}-E_{\vv{K'}\vv{k'}}-i\epsilon)^{-1}.
\end{eqnarray*}
This defines $b$ in which we put $\vv{k}''=\vv{k}$. We can then take the imaginary part, which gives,
\begin{eqnarray*} n_{\xi_1\xi_2} &=& \rho_1N_2(2\pi\hbar)^3\frac{2\pi}{\hbar}\times \\
&&\int_\Delta
d^3\vv{k}'\delta(E_{\vv{K}\vv{k}}-E_{\vv{K'}\vv{k'}})
|T(\vv{k}'\gamma_1'\gamma_2',\vv{k}\gamma_1\gamma_2;\vv{K})|^2
\end{eqnarray*}
Because of $\vv{K}=\vv{K}'$ the energy corresponding to total momentum is already equal, so $E_{\vv{K}\vv{k}}-E_{\vv{K'}\vv{k'}}=e_{\vv{k}}-e_{\vv{k'}}$.  As, in the case of potential scattering, we change
\begin{eqnarray*} d^3\vv{k}=|\vv{k}|^2d|\vv{k}|d\Omega_\vv{k}=
\mu|\vv{k}|de_\vv{k}d\Omega_\vv{k} \end{eqnarray*}
this gives us the formula for cross section which is now defined as rate of transitions {\em per target particle}. The flux is now given by $\rho_1\times{\rm relative\ velocity}=\rho_1 |\vv{k}|/\mu$. We get
\begin{eqnarray}d\sigma =(2\pi)^4\mu^2\hbar^2
|T(\vv{k}'\gamma_1'\gamma_2',\vv{k}\gamma_1\gamma_2;\vv{K})|^2 d\Omega_\vv{k}'
\end{eqnarray}
{\bf This is the same formula as the one for the cross section by a fixed potential, with relative momentum $|\vv{k}|=|\vv{k}'|$ for the particle momentum and the reduced mass in place of particle mass. } In the center of mass frame, we must put $\vv{K}=0$.

Exclude node summary : 

n
0
 
X