# [YMP/EM-02012] Average Value of Electric Field

For page specific messages
For page author info

Category:

Problem

A solid sphere of radius $$R$$ carries a charge density $$\rho(\vec{r})$$. Show that the average of the electric field inside the sphere is $\vec{E}= - \frac{1}{4\pi\epsilon_0} \frac{\vec{p}}{R^3},$ where $$\vec{p}$$ is the total dipole moment of the sphere.

Solution
For any charge distribution $$\rho$$, the electric field at a point $$\vec{r}$$ is given by \begin{equation} \vec{E} = \frac{1}{4\pi\epsilon_0} \iiint \frac{\rho(\vec{r}^\prime)(\vec{r}-\vec{r}^\prime)}{|\vec{r}-\vec{r}^\prime|^3} d^3 r^\prime. \end{equation} Therefore the average of the electric field over the sphere of radius $$R$$ is given by
\begin{eqnarray}
\vec{E}_\text{av}
&=& \frac{3}{4\pi R^3} \iiint_{S_R} d^3r \vec{E}(\vec{r})\\
&=& \frac{1}{4\pi\epsilon_0} \frac{3}{4\pi R^3} \iiint_{S_R} d^3r \iiint
\frac{\rho(\vec{r}^\prime)(\vec{r}-\vec{r}^\prime)}{|\vec{r}-\vec{r}^\prime|^3}
d^3 r^\prime.\\
\end{eqnarray}
Exchanging the integrals over $$\vec{r}$$ and $$\vec{r}^\prime$$ we get
\begin{eqnarray}
\vec{E}_\text{av}
&=& \frac{1}{4\pi\epsilon_0} \frac{3}{4\pi R^3} \iiint d^3r \iiint_{S_R}
\frac{\rho(\vec{r}^\prime)(\vec{r}-\vec{r}^\prime)}{|\vec{r}-\vec{r}^\prime|^3}
d^3 r^\prime.\\
&=& \frac{1}{4\pi\epsilon_0} \frac{3}{4\pi R^3} \iiint d^3r^\prime  \rho(\vec{r}^\prime)\iiint_{S_R}
\frac{(\vec{r}-\vec{r}^\prime)}{|\vec{r}-\vec{r}^\prime|^3}d^3r.\label{EQ07}
\end{eqnarray}
Suppose we have a  uniformly charged sphere of radius $$R$$ with some constant density $$\rho_0$$, the electric  field at a point  $$\vec{r}_P$$ inside the sphere  will be
$\frac{1}{4\pi\epsilon_0} \iiint_{S_R} \rho_0 \frac{(\vec{r}_P-\vec{r})}{|\vec{r}_P-\vec{r}|^3} d^3r.$
This answer is known and is given by $$\dfrac{Q}{3\epsilon_0}. \dfrac{\vec{r}_P}{R}$$, where $$Q$$ is the total charge $$Q=\frac{4}{3}\pi R^3 \rho_0$$.
Therefore we know the integral
\begin{equation}
\frac{1}{4\pi\epsilon_0} \iiint_{S_R} \rho_0 \frac{(\vec{r}_P-\vec{r})}{|\vec{r}_P-\vec{r}|^3}
d^3r = \frac{Q}{3\epsilon_0}. \frac{\vec{r}_P}{R^3}.
\end{equation}
This equation with obvious replacements $$\rho_0\to1, Q \to \frac{4}{3}\pi R^3, \vec{r}_P \to \vec{r}^{\,\prime}$$ in  \Eqref{EQ07} gives \begin{equation} \vec{E}_\text{av}= - \frac{1}{4\pi\epsilon_0} .\frac{\vec{p}}{R^3} \end{equation} where $$\vec{p}$$ is the dipole moment of the sphere. We write the dipole moment $$\vec{p}= \frac{4}{3}\pi R^3 \vec{P}$$, in terms of polarization per unit volume $$\vec{P}$$: $\vec{E}_\text{av} = - \frac{1}{3\epsilon_0}\, \vec{P}.$

n
0

X